Find the total number of possible n values in which the interior angle of a regular polygon with n sides and the interior angle of a regular polygon with m sides add up to exactly 3 5 9 ° .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great solution! Thanks for sharing.
Am I missing something? Wouldn't m be negative for all values of n ?
Also, n can not be 1 , 2 (there are no regular polygons with these many sides)
Can you please give an example of ( n , m ) ?
Log in to reply
I did not say that n had to be a positive factor of 3 6 0 2 . I said that n − 3 6 0 had to be a positive factor of 3 6 0 2 . Thus we could have n − 3 6 0 = 1 , m − 3 6 0 = 3 6 0 2 , so that n = 3 6 1 and m = 3 6 0 × 3 6 1 , for example.
We should remove 4 solutions.
Log in to reply
You should read my reply to the previous comment before making the same mistake as Mr India...
1 8 0 − n 3 6 0 + 1 8 0 − m 3 6 0 = 3 5 9 ⟹ n 3 6 0 + m 3 6 0 = 1
We are hence looking for n 3 6 0 = b a for coprime ( a , b ) , and m 3 6 0 = b b − a .
In which case, n = a 3 6 0 b , m = b − a 3 6 0 b . So a and b − a are coprime factors of 3 6 0 .
3 6 0 = 2 3 × 3 2 × 5 .
Possible coprime pairings of factors are:
2 , 3 , 5 ∤ n , Leads to 4 × 3 × 2 = 2 4 pairs.
2 ∣ n , & 3 , 5 ∤ n , Leads to 3 × ( 3 × 2 ) = 1 8 pairs.
3 ∣ n , & 2 , 5 ∤ n , Leads to 2 × ( 4 × 2 ) = 1 6 pairs.
5 ∣ n , & 2 , 3 ∤ n , Leads to 1 × ( 4 × 3 ) = 1 2 pairs.
2 , 3 ∣ n , & 5 ∤ n , Leads to ( 3 × 2 ) × 2 = 1 2 pairs.
2 , 5 ∣ n , & 3 ∤ n , Leads to ( 3 × 1 ) × 3 = 9 pairs.
3 , 5 ∣ n , & 2 ∤ n , Leads to ( 2 × 1 ) × 4 = 8 pairs.
2 , 3 , 5 ∣ n , Leads to ( 3 × 2 × 1 ) × 1 = 6 pairs.
The total number of pairs are 1 0 5 .
Note, for coprime pair of factors ( x , y ) , n = x 3 6 0 ( x + y ) , m = y 3 6 0 ( x + y ) , which are integers, and n 3 6 0 + m 3 6 0 = x + y x + x + y y = 1 .
Nice solution!
Length of table is 105 (the result of { m , n } /. Solve [ m 3 6 0 + n 3 6 0 = 1 ∧ m ≥ 3 ∧ n ≥ 3 , Z ] :
⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 3 6 1 3 6 2 3 6 3 3 6 4 3 6 5 3 6 6 3 6 8 3 6 9 3 7 0 3 7 2 3 7 5 3 7 6 3 7 8 3 8 0 3 8 4 3 8 5 3 8 7 3 9 0 3 9 2 3 9 6 4 0 0 4 0 5 4 0 8 4 1 0 4 1 4 4 2 0 4 2 4 4 3 2 4 3 5 4 4 0 4 4 1 4 5 0 4 5 6 4 6 0 4 6 8 4 8 0 4 9 5 5 0 4 5 1 0 5 2 0 5 2 2 5 4 0 5 5 2 5 6 0 5 7 6 5 8 5 6 0 0 6 3 0 6 4 8 6 6 0 6 8 0 6 8 4 7 2 0 7 6 0 7 6 5 7 9 2 8 1 0 8 4 0 9 0 0 9 3 6 9 6 0 1 0 0 8 1 0 3 5 1 0 8 0 1 1 6 0 1 1 7 0 1 2 2 4 1 2 6 0 1 3 2 0 1 4 4 0 1 5 6 0 1 6 5 6 1 7 1 0 1 8 0 0 1 9 6 0 1 9 8 0 2 0 8 8 2 1 6 0 2 3 8 5 2 5 2 0 2 7 6 0 2 9 5 2 3 0 6 0 3 2 4 0 3 6 0 0 3 9 6 0 4 4 1 0 4 6 8 0 5 1 6 0 5 5 4 4 5 7 6 0 6 8 4 0 7 5 6 0 8 4 6 0 9 0 0 0 1 1 1 6 0 1 3 3 2 0 1 4 7 6 0 1 6 5 6 0 2 1 9 6 0 2 6 2 8 0 3 2 7 6 0 4 3 5 6 0 6 5 1 6 0 1 2 9 9 6 0 1 2 9 9 6 0 6 5 1 6 0 4 3 5 6 0 3 2 7 6 0 2 6 2 8 0 2 1 9 6 0 1 6 5 6 0 1 4 7 6 0 1 3 3 2 0 1 1 1 6 0 9 0 0 0 8 4 6 0 7 5 6 0 6 8 4 0 5 7 6 0 5 5 4 4 5 1 6 0 4 6 8 0 4 4 1 0 3 9 6 0 3 6 0 0 3 2 4 0 3 0 6 0 2 9 5 2 2 7 6 0 2 5 2 0 2 3 8 5 2 1 6 0 2 0 8 8 1 9 8 0 1 9 6 0 1 8 0 0 1 7 1 0 1 6 5 6 1 5 6 0 1 4 4 0 1 3 2 0 1 2 6 0 1 2 2 4 1 1 7 0 1 1 6 0 1 0 8 0 1 0 3 5 1 0 0 8 9 6 0 9 3 6 9 0 0 8 4 0 8 1 0 7 9 2 7 6 5 7 6 0 7 2 0 6 8 4 6 8 0 6 6 0 6 4 8 6 3 0 6 0 0 5 8 5 5 7 6 5 6 0 5 5 2 5 4 0 5 2 2 5 2 0 5 1 0 5 0 4 4 9 5 4 8 0 4 6 8 4 6 0 4 5 6 4 5 0 4 4 1 4 4 0 4 3 5 4 3 2 4 2 4 4 2 0 4 1 4 4 1 0 4 0 8 4 0 5 4 0 0 3 9 6 3 9 2 3 9 0 3 8 7 3 8 5 3 8 4 3 8 0 3 7 8 3 7 6 3 7 5 3 7 2 3 7 0 3 6 9 3 6 8 3 6 6 3 6 5 3 6 4 3 6 3 3 6 2 3 6 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
Problem Loading...
Note Loading...
Set Loading...
We want to solve the Diophantine equation 1 8 0 − n 3 6 0 + 1 8 0 − m 3 6 0 m 3 6 0 + n 3 6 0 ( m − 3 6 0 ) ( n − 3 6 0 ) = 3 5 9 = 1 = 3 6 0 2 = 2 6 × 3 4 × 5 2 Thus possible values of n − 3 6 0 are positive integer factors of 3 6 0 2 . There are 7 × 5 × 3 = 1 0 5 such factors.