Regular Polygons and 359°

Find the total number of possible n n values in which the interior angle of a regular polygon with n n sides and the interior angle of a regular polygon with m m sides add up to exactly 359 ° 359° .


The answer is 105.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
May 22, 2019

We want to solve the Diophantine equation 180 360 n + 180 360 m = 359 360 m + 360 n = 1 ( m 360 ) ( n 360 ) = 36 0 2 = 2 6 × 3 4 × 5 2 \begin{aligned} 180 - \tfrac{360}{n} + 180 - \tfrac{360}{m} & = \; 359 \\ \tfrac{360}{m} + \tfrac{360}{n} & = \; 1 \\ (m - 360)(n - 360) & = \; 360^2 \; = \; 2^6 \times 3^4 \times 5^2 \end{aligned} Thus possible values of n 360 n-360 are positive integer factors of 36 0 2 360^2 . There are 7 × 5 × 3 = 105 7 \times 5 \times 3 = \boxed{105} such factors.

Great solution! Thanks for sharing.

David Vreken - 2 years ago

Am I missing something? Wouldn't m m be negative for all values of n n ?

Also, n n can not be 1 , 2 1,2 (there are no regular polygons with these many sides)

Can you please give an example of ( n , m ) (n,m) ?

Mr. India - 2 years ago

Log in to reply

I did not say that n n had to be a positive factor of 36 0 2 360^2 . I said that n 360 n-360 had to be a positive factor of 36 0 2 360^2 . Thus we could have n 360 = 1 n-360=1 , m 360 = 36 0 2 m-360=360^2 , so that n = 361 n=361 and m = 360 × 361 m = 360 \times 361 , for example.

Mark Hennings - 2 years ago

We should remove 4 solutions.

A Former Brilliant Member - 1 year, 11 months ago

Log in to reply

You should read my reply to the previous comment before making the same mistake as Mr India...

Mark Hennings - 1 year, 11 months ago
Alex Burgess
May 24, 2019

180 360 n + 180 360 m = 359 360 n + 360 m = 1 180 - \frac{360}{n} + 180 - \frac{360}{m} = 359 \implies \frac{360}{n} + \frac{360}{m} = 1

We are hence looking for 360 n = a b \frac{360}{n} = \frac{a}{b} for coprime ( a , b ) (a,b) , and 360 m = b a b \frac{360}{m} = \frac{b - a}{b} .

In which case, n = 360 a b , m = 360 b a b n = \frac{360}{a} b, m = \frac{360}{b - a} b . So a a and b a b - a are coprime factors of 360 360 .

360 = 2 3 × 3 2 × 5 360 = 2^3 \times 3^2 \times 5 .

Possible coprime pairings of factors are:

2 , 3 , 5 n , 2,3,5 \nmid n, Leads to 4 × 3 × 2 = 24 4 \times 3 \times 2 = 24 pairs.

2 n , 2 \mid n, & 3 , 5 n , 3,5 \nmid n, Leads to 3 × ( 3 × 2 ) = 18 3 \times (3 \times 2 ) = 18 pairs.

3 n , 3 \mid n, & 2 , 5 n , 2,5 \nmid n, Leads to 2 × ( 4 × 2 ) = 16 2 \times (4 \times 2 ) = 16 pairs.

5 n , 5 \mid n, & 2 , 3 n , 2,3 \nmid n, Leads to 1 × ( 4 × 3 ) = 12 1 \times (4 \times 3 ) = 12 pairs.

2 , 3 n , 2,3 \mid n, & 5 n , 5 \nmid n, Leads to ( 3 × 2 ) × 2 = 12 (3 \times 2) \times 2 = 12 pairs.

2 , 5 n , 2,5 \mid n, & 3 n , 3 \nmid n, Leads to ( 3 × 1 ) × 3 = 9 (3 \times 1) \times 3 = 9 pairs.

3 , 5 n , 3,5 \mid n, & 2 n , 2 \nmid n, Leads to ( 2 × 1 ) × 4 = 8 (2 \times 1) \times 4 = 8 pairs.

2 , 3 , 5 n , 2,3,5 \mid n, Leads to ( 3 × 2 × 1 ) × 1 = 6 (3 \times 2 \times 1) \times 1 = 6 pairs.

The total number of pairs are 105 105 .


Note, for coprime pair of factors ( x , y ) (x,y) , n = 360 x ( x + y ) , m = 360 y ( x + y ) n = \frac{360}{x} (x+y), m = \frac{360}{y} (x+y) , which are integers, and 360 n + 360 m = x x + y + y x + y = 1 \frac{360}{n} + \frac{360}{m} = \frac{x}{x+y} + \frac{y}{x+y} = 1 .

Nice solution!

David Vreken - 2 years ago

Length of table is 105 (the result of { m , n } /. Solve [ 360 m + 360 n = 1 m 3 n 3 , Z ] \{m,n\}\text{/.}\, \text{Solve}\left[\frac{360}{m}+\frac{360}{n}=1\land m\geq 3\land n\geq 3,\mathbb{Z}\right] :

( 361 129960 362 65160 363 43560 364 32760 365 26280 366 21960 368 16560 369 14760 370 13320 372 11160 375 9000 376 8460 378 7560 380 6840 384 5760 385 5544 387 5160 390 4680 392 4410 396 3960 400 3600 405 3240 408 3060 410 2952 414 2760 420 2520 424 2385 432 2160 435 2088 440 1980 441 1960 450 1800 456 1710 460 1656 468 1560 480 1440 495 1320 504 1260 510 1224 520 1170 522 1160 540 1080 552 1035 560 1008 576 960 585 936 600 900 630 840 648 810 660 792 680 765 684 760 720 720 760 684 765 680 792 660 810 648 840 630 900 600 936 585 960 576 1008 560 1035 552 1080 540 1160 522 1170 520 1224 510 1260 504 1320 495 1440 480 1560 468 1656 460 1710 456 1800 450 1960 441 1980 440 2088 435 2160 432 2385 424 2520 420 2760 414 2952 410 3060 408 3240 405 3600 400 3960 396 4410 392 4680 390 5160 387 5544 385 5760 384 6840 380 7560 378 8460 376 9000 375 11160 372 13320 370 14760 369 16560 368 21960 366 26280 365 32760 364 43560 363 65160 362 129960 361 ) \left( \begin{array}{cc} 361 & 129960 \\ 362 & 65160 \\ 363 & 43560 \\ 364 & 32760 \\ 365 & 26280 \\ 366 & 21960 \\ 368 & 16560 \\ 369 & 14760 \\ 370 & 13320 \\ 372 & 11160 \\ 375 & 9000 \\ 376 & 8460 \\ 378 & 7560 \\ 380 & 6840 \\ 384 & 5760 \\ 385 & 5544 \\ 387 & 5160 \\ 390 & 4680 \\ 392 & 4410 \\ 396 & 3960 \\ 400 & 3600 \\ 405 & 3240 \\ 408 & 3060 \\ 410 & 2952 \\ 414 & 2760 \\ 420 & 2520 \\ 424 & 2385 \\ 432 & 2160 \\ 435 & 2088 \\ 440 & 1980 \\ 441 & 1960 \\ 450 & 1800 \\ 456 & 1710 \\ 460 & 1656 \\ 468 & 1560 \\ 480 & 1440 \\ 495 & 1320 \\ 504 & 1260 \\ 510 & 1224 \\ 520 & 1170 \\ 522 & 1160 \\ 540 & 1080 \\ 552 & 1035 \\ 560 & 1008 \\ 576 & 960 \\ 585 & 936 \\ 600 & 900 \\ 630 & 840 \\ 648 & 810 \\ 660 & 792 \\ 680 & 765 \\ 684 & 760 \\ 720 & 720 \\ 760 & 684 \\ 765 & 680 \\ 792 & 660 \\ 810 & 648 \\ 840 & 630 \\ 900 & 600 \\ 936 & 585 \\ 960 & 576 \\ 1008 & 560 \\ 1035 & 552 \\ 1080 & 540 \\ 1160 & 522 \\ 1170 & 520 \\ 1224 & 510 \\ 1260 & 504 \\ 1320 & 495 \\ 1440 & 480 \\ 1560 & 468 \\ 1656 & 460 \\ 1710 & 456 \\ 1800 & 450 \\ 1960 & 441 \\ 1980 & 440 \\ 2088 & 435 \\ 2160 & 432 \\ 2385 & 424 \\ 2520 & 420 \\ 2760 & 414 \\ 2952 & 410 \\ 3060 & 408 \\ 3240 & 405 \\ 3600 & 400 \\ 3960 & 396 \\ 4410 & 392 \\ 4680 & 390 \\ 5160 & 387 \\ 5544 & 385 \\ 5760 & 384 \\ 6840 & 380 \\ 7560 & 378 \\ 8460 & 376 \\ 9000 & 375 \\ 11160 & 372 \\ 13320 & 370 \\ 14760 & 369 \\ 16560 & 368 \\ 21960 & 366 \\ 26280 & 365 \\ 32760 & 364 \\ 43560 & 363 \\ 65160 & 362 \\ 129960 & 361 \\ \end{array} \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...