regular tetrahedron coordinate

Geometry Level 5

Let O O be the origin , P ( a , b , c ) P(a,b,c) , Q ( c , a , b ) Q(c,a,b) and R ( b , c , a ) R(b,c,a) where a a , b b and c c are positive integers. If O P Q R OPQR is a regular tetrahedron, find the minimum possible value of the volume of O P Q R OPQR .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Mendrin
Aug 6, 2018

We can use coordinates ( 0 , 0 , 0 ) (0, 0, 0) , ( a , b , c ) (a, b, c) , ( a , c , b ) (a, c, b) , ( c , b , a ) (c, b, a) , so we solve the equation for the two different side lengths in this symmetric but not necessarily regular tetrahedron

a 2 + b 2 + c 2 = ( a a ) 2 + ( b c ) 2 + ( c b ) 2 a^2+b^2+c^2=(a-a)^2+(b-c)^2+(c-b)^2

c = a + b + 2 a b c =a + b + 2 \sqrt{ab}

So, we let ( a , b . c ) = ( 1 , 1 , 4 ) (a,b. c)=(1,1,4) , and end up with the volume of 9 9 for the regular tetrahedron of side length 18 \sqrt{18} .

The next smallest tetrahedron has a side length of 98 \sqrt{98} , with ( a , b , c ) = ( 1 , 4 , 9 ) (a,b,c)=(1,4,9)

X X
Aug 6, 2018

P Q 2 = P O 2 = ( a c ) 2 + ( c b ) 2 + ( b a ) 2 = a 2 + b 2 + c 2 \overline{PQ}^2=\overline{PO}^2=(a-c)^2+(c-b)^2+(b-a)^2=a^2+b^2+c^2

So, a 2 + b 2 + c 2 2 ( a b + b c + c a ) = ( a + b + c ) ( a + b c ) ( a b + c ) ( a + b + c ) = 0 a^2+b^2+c^2-2(ab+bc+ca)=(\sqrt{a}+\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b}-\sqrt{c})(\sqrt{a}-\sqrt{b}+\sqrt{c})(-\sqrt{a}+\sqrt{b}+\sqrt{c})=0

So if a < b < c a<b<c ,then a + b = c \sqrt{a}+\sqrt{b}=\sqrt{c}

Minimum value is when a = b = 1 , c = 4 , P O = 18 a=b=1,c=4,\overline{PO}=\sqrt{18}

The volume of a regular tetrahedron is a 3 2 12 \dfrac{a^3\sqrt{2}}{12} ( a a is the side length),so 18 3 × 2 12 = 9 \dfrac{\sqrt{18}^3\times\sqrt{2}}{12}=9

Mark Hennings
Aug 7, 2018

The volume of O P Q R OPQR is V ( a , b , c ) = 1 6 ( a b c ) ( ( b c a ) × ( c a b ) ) = 1 6 ( a 3 + b 3 + c 3 3 a b c ) V(a,b,c) \; = \; \left| \tfrac16 \left(\begin{array}{c} a \\ b \\ c \end{array}\right) \cdot \left( \left(\begin{array}{c} b \\ c \\ a \end{array}\right) \times \left(\begin{array}{c} c \\ a \\ b \end{array}\right)\right)\right| \; = \; \tfrac16(a^3 + b^3 + c^3 - 3abc) for any positive integers a , b , c a,b,c where, for simplicity, we shall assume that a b c a \le b \le c . It is easy to show that V ( a , b , c ) V ( a + 1 , b + 1 , c + 1 ) V ( a , b , c ) V ( a , b + 1 , c + 1 ) V ( a , b , c ) V ( a , b , c + 1 ) V(a,b,c) \le V(a+1,b+1,c+1) \hspace{1cm} V(a,b,c) \le V(a,b+1,c+1) \hspace{1cm} V(a,b,c) \le V(a,b,c+1) for all positive integers a b c a \le b \le c .

For O P Q R OPQR to be regular, we must have a 2 + b 2 + c 2 = ( a b ) 2 + ( b c ) 2 + ( c a ) 2 a^2 + b^2 + c^2 = (a-b)^2 + (b-c)^2 + (c-a)^2 . One solution to this equation is a = b = 1 , c = 4 a=b=1,c=4 . By the above paragraph, V ( 1 , 1 , 2 ) V(1,1,2) and V ( 1 , 1 , 3 ) V(1,1,3) are the only two tetrahedron volumes which are smaller than V ( 1 , 1 , 4 ) V(1,1,4) . Thus V ( 1 , 1 , 4 ) = 9 V(1,1,4)= \boxed{9} is certainly the smallest possible regular tetrahedron volume (and the third smallest tetrahedron volume overall).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...