Let a n , b n , and c n satisfy the system of recursive relations below for n ≥ 2 :
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ b n − 2 n − 2 = c n − 1 − c n − 2 − 3 a n − 2 2 n − 3 + a n − 1 − 5 a n − 2 = 2 b n − 1 + c n − 2 c n − 6 a n − 2 + 5 a n − 1 = a n − 2 n − 2
If a 0 = 5 , a 1 = 1 0 , b 0 = − 4 8 2 5 9 , b 1 = − 8 6 5 , c 0 = 4 7 , and c 1 = 2 3 , find the value of a 7 + b 5 c 6 .
This problem is part of the set " Xenophobia "
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Rearranging
⎩ ⎪ ⎨ ⎪ ⎧ b n = c n − 1 − c n − 2 − 3 a n − 2 + 2 n − 2 c c i i c c c ( 1 ) a n − 1 = 2 b n − 1 + c n − 2 + 5 a n − 2 − 2 n − 3 c c c ( 2 ) c n = a n + 6 a n − 2 − 5 a n − 1 − 2 n − 2 c c c c c c c ( 3 )
We can increase/decrease every indices/exponent that depends on n by the same amount without changing the recurrence. Increasing by 1 in ( 2 )
⎩ ⎪ ⎨ ⎪ ⎧ b n = c n − 1 − c n − 2 − 3 a n − 2 + 2 n − 2 c c i c ( 1 ) a n = 2 b n + c n − 1 + 5 a n − 1 − 2 n − 2 c c i i c ( 2 ) c n = a n + 6 a n − 2 − 5 a n − 1 − 2 n − 2 c i c i c ( 3 )
Now, with 2 ( 1 ) + ( 2 ) + ( 3 ) we get
2 b n + a n + c n = 2 ( c n − 1 − c n − 2 − 3 a n − 2 + 2 n − 2 ) + 2 b n + c n − 1 + 5 a n − 1 − 2 n − 2 + a n + 6 a n − 2 − 5 a n − 1 − 2 n − 2
Simplifying like terms
c n = 3 c n − 1 − 2 c n − 2
Using the auxiliary polynomial to find the closed form
p ( t ) = t 2 − 3 t + 2
Its roots are t = 1 and t = 2 , so c n is of the form
c n = λ 1 + λ 2 2 n
Using the given values of c 0 and c 1
⎩ ⎪ ⎨ ⎪ ⎧ c 0 = λ 1 + λ 2 = 4 7 c 1 = λ 1 + 2 λ 2 = 2 3 ⟹ λ 1 = 2 , λ 2 = − 4 1
⟹ c n = 2 − 2 n − 2
Substituting back in ( 3 ) and simplifying like terms
a n = 5 a n − 1 − 6 a n − 2 + 2
To find the closed form of a n I'll use a generating function
A ( x ) = k = 0 ∑ ∞ a k x k = a 0 + a 1 x + k = 2 ∑ ∞ a k x k = 5 + 1 0 x + k = 2 ∑ ∞ ( 5 a k − 1 − 6 a k − 2 + 2 ) x k = 5 + 1 0 x + 5 k = 2 ∑ ∞ a k − 1 x k − 6 k = 2 ∑ ∞ a k − 2 x k + k = 2 ∑ ∞ 2 x k = 5 + 1 0 x − 5 a 0 x + 5 x k = 1 ∑ ∞ a k − 1 x k − 1 − 6 x 2 k = 2 ∑ ∞ a k − 2 x k − 2 + 1 − x 2 x 2 = 5 − 1 5 x + 5 x A ( x ) − 6 x 2 A ( x ) + 1 − x 2 x 2
From which we get
A ( x ) = 6 x 2 − 5 x + 1 5 − 1 5 x + 1 − x 2 x 2
By partial fractions and Taylor series of 1 − x 1
A ( x ) = 1 − 2 x 3 + 1 − 3 x 1 + 1 − x 1 = k = 0 ∑ ∞ ( 3 ⋅ 2 k + 3 k + 1 ) x k
⟹ a n = 3 ⋅ 2 n + 3 n + 1
By substitution in ( 1 ) we can get the closed form of b n
b n = c n − 1 − c n − 2 − 3 a n − 2 + 2 n − 2 = 2 − 2 n − 3 − ( 2 − 2 n − 4 ) − 3 ( 3 ⋅ 2 n − 2 + 3 n − 2 + 1 ) + 2 n − 2 = − 3 3 ⋅ 2 n − 4 − 3 n − 1 − 3
To summarize
⎩ ⎪ ⎨ ⎪ ⎧ a n = 3 ⋅ 2 n + 3 n + 1 b n = − 3 3 ⋅ 2 n − 4 − 3 n − 1 − 3 c n = 2 − 2 n − 2
Thus
a 7 + b 5 c 6 = 3 ⋅ 2 7 + 3 7 + 1 + ( − 3 3 ⋅ 2 5 − 4 − 3 5 − 1 − 3 ) ( 2 − 2 6 − 2 ) = 2 5 7 2 + ( − 1 5 0 ) ( − 1 4 ) = 4 6 7 2