Relating Floor Function to Totient Function

ϕ ( 1 ) 63 1 + ϕ ( 2 ) 63 2 + ϕ ( 3 ) 63 3 + + ϕ ( 63 ) 63 63 = ? \phi(1) \left \lfloor \dfrac {63}{1} \right\rfloor + \phi(2) \left \lfloor \dfrac {63}{2} \right\rfloor + \phi(3) \left \lfloor \dfrac {63}{3} \right\rfloor + \cdots + \phi(63) \left \lfloor \dfrac {63}{63} \right \rfloor = \, ?

Notations:


Bonus: Generalize this for k = 1 n ϕ ( k ) n k \displaystyle \sum_{k=1}^n \phi(k) \left \lfloor \dfrac n k \right \rfloor .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Aug 20, 2017

I will prove in general that k 1 ϕ ( k ) n k = n ( n + 1 ) 2 . \displaystyle \sum_{k \geq 1} \phi(k) \left \lfloor \dfrac{n}{k} \right \rfloor = \dfrac{n(n+1)}{2}.

Note that n k \left \lfloor \dfrac{n}{k} \right \rfloor is the expression for the number of multiples of k k less than or equal to n n . Thus, we can write n k \left \lfloor \dfrac{n}{k} \right \rfloor as n k = \substack m n k m 1. \left \lfloor \dfrac{n}{k} \right \rfloor = \displaystyle \sum_{\substack{m \leq n\\ k \mid m}} 1.

Thus, substituting this back into the original expression gives us \begin{aligned} \displaystyle \sum_{k \geq 1} \phi(k) \left \lfloor \dfrac{n}{k} \right \rfloor &= \displaystyle \sum_{k \geq 1} \phi(k) \displaystyle \sum_{\substack{m \leq n\\ k \mid m}} 1\\ &= \displaystyle \sum_{k \geq 1} \displaystyle \sum_{\substack{m \leq n\\ k \mid m}} \phi(k). \end{aligned}

If we instead consider this summation in k k , rather than in m m , we get \begin{aligned} \displaystyle \sum_{k \geq 1} \displaystyle \sum_{\substack{m \leq n\\ k \mid m}} \phi(k) &= \displaystyle \sum_{k \geq 1} \displaystyle \sum_{\substack{k \mid m\\ m \leq n}} \phi(k)\\ &= \displaystyle \sum_{m=1}^{n} \displaystyle \sum_{k \mid m} \phi(k). \end{aligned}

Now we can use the famous identity d n ϕ ( d ) = n . \displaystyle \sum_{d \mid n} \phi(d) = n.

to get m = 1 n k m ϕ ( k ) = m = 1 n m = n ( n + 1 ) 2 . \begin{aligned} \displaystyle \sum_{m=1}^{n} \displaystyle \sum_{k \mid m} \phi(k) &= \displaystyle \sum_{m=1}^{n} m\\ &= \dfrac{n(n+1)}{2}. \end{aligned}

Thus, proven.

Substituting n = 63 n=63 gives us the answer of 2016 2016 .

Small typo. Below the first display formula, you should have "the number of multiples of k k less than or equal to n n ", not factors .

Mark Hennings - 3 years, 9 months ago

Log in to reply

Thanks, fixed. :)

Sharky Kesa - 3 years, 9 months ago

Am I missing something here? The value of n is 63. But the summation is equal to 2016. The question asks for the summation. Not for the value of n.

Frank Aiello - 3 years, 9 months ago

Log in to reply

Someone changed the answer. Will tell moderation.

Sharky Kesa - 3 years, 9 months ago
Aman Dubey
Oct 5, 2017

Its easy to prove that if F ( n ) = d n f ( d ) F(n)=\sum_{d|n}^{}f(d)

Then n = 1 N F ( n ) = k = 1 N f ( k ) N / k \sum_{n=1}^{N}F(n)=\sum_{k=1}^{N}f(k)\left\lfloor N/k\right\rfloor

If we consider f ( n ) = ϕ ( n ) f(n) = \phi(n) We get F ( n ) = d n ϕ ( n ) = n F(n) = \sum_{d|n}\phi(n) =n

So k = 1 N ϕ ( k ) N / k = n = 1 N F ( n ) = n ( n + 1 ) 2 \sum_{k=1}^{N}\phi(k)\left\lfloor N/k\right\rfloor =\sum_{n=1}^{N}F(n)=\frac{n(n+1)}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...