Relating variables .

Algebra Level 3

If x y 1 + x y + y z 1 + y z + z x 1 + z x = 0 \frac { x-y }{ 1+xy } +\frac { y-z }{ 1+yz } +\frac { z-x }{ 1+zx } =0 , then which of the following statements are true?

Note: Try to prove all the parts if you get the correct answer .

all variables are equal and equal to zero all variables are equal None of the above some two variables must be equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Kelkar
Jun 29, 2014

Let us substitute x = t a n A y = t a n B z = t a n C x=tanA\quad y=tanB\quad z=tanC . x y 1 + x y + y z 1 + y z + z x 1 + z x = t a n ( A B ) + t a n ( B C ) + t a n ( C A ) = 0 s i n ( A C ) c o s ( A B ) c o s ( B C ) + s i n ( C A ) c o s ( C A ) = 0 F o r s i n ( A C ) 0 c o s ( C A ) = c o s ( A C ) + c o s ( A + C 2 B ) c o s ( C A ) = c o s ( A + C 2 B ) S o , e i t h e r C A = A + C 2 B A = B o r C A = ( A + C 2 B ) C = B F o r s i n ( A C ) = 0 A = C H e n c e P r o o v e d . \frac { x-y }{ 1+xy } +\frac { y-z }{ 1+yz } +\frac { z-x }{ 1+zx } =tan(A-B)+tan(B-C)+tan(C-A)=0\quad \quad \\ \\ \Longrightarrow \quad \frac { sin(A-C) }{ cos(A-B)cos(B-C) } +\frac { sin(C-A) }{ cos(C-A) } =0\\ \\ For\quad sin(A-C)\neq 0\quad \\ \quad \quad \quad \quad \quad \quad cos(C-A)\quad =\quad cos(A-C)\quad +cos(A+C-2B)\quad \\ \Rightarrow \quad \quad \quad cos(C-A)=\quad cos(A+C-2B)\quad \\ So,\quad \\ \quad \quad \quad either\quad \quad \quad C-A\quad =\quad A+C-2B\quad \quad \Rightarrow \quad A=B\\ \quad \quad \quad \quad \quad or\quad \quad \quad \quad C-A\quad =\quad -(A+C-2B)\quad \Rightarrow \quad C=B\\ \quad \\ For\quad sin(A-C)=0\quad \Rightarrow \quad A=C\quad \quad \\ Hence\quad Prooved\quad .

How did you get cos ( C A ) = cos ( A C ) + cos ( A + C 2 B ) \cos (C-A) = \cos (A-C) + \cos (A+C - 2B) ?

I believe that your option should be "Some 2 of the variables are equal", as opposed to "Any 2 of the variables are equal". The latter implies that a = b a=b AND b = c b=c AND c = a c =a . I have updated it accordingly.

Calvin Lin Staff - 6 years, 11 months ago

thanks for the correction @Calvin Lin

Anish Kelkar - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...