Relativistic electron

Within a vacuum tube, an electron is accelerated by a DC electrical voltage of U = 400 kV U = 400 \, \text{kV} . Suppose the electron has zero velocity at the cathode. What is the final velocity v v of the electron when it hits the anode?

The following constants could be helpful: Elementary charge e 1.6 1 0 19 C Mass of an electron m e 9.1 1 0 31 kg Speed of light c 3 1 0 8 m / s \begin{aligned} \text{Elementary charge} & & e &\approx 1.6 \cdot 10^{-19} \,\text{C} \\ \text{Mass of an electron} & & m_e &\approx 9.1 \cdot 10^{-31}\,\text{kg} \\ \text{Speed of light} & & c&\approx 3 \cdot 10^{8} \,\text{m}/\text{s} \end{aligned}

v 3 1 0 8 m / s v \approx 3 \cdot 10^8 \,\text{m}/\text{s} v 1.6 1 0 8 m / s v \approx 1.6 \cdot 10^8 \,\text{m}/\text{s} v 2.5 1 0 8 m / s v \approx 2.5 \cdot 10^8 \,\text{m}/\text{s} v 0.8 1 0 8 m / s v \approx 0.8 \cdot 10^8 \,\text{m}/\text{s} v 3.8 1 0 8 m / s v \approx 3.8 \cdot 10^8 \,\text{m}/\text{s}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

In an electric field of voltage U = 400 kV U = 400 \,\text{kV} , the electron has at the cathode a potential energy E pot = e U = 400 keV 6.4 1 0 14 J E_\text{pot} = eU = 400 \,\text{keV} \approx 6.4\cdot 10^{-14} \,\text{J} The rest energy of an electron results according to Einstein E 0 = m e c 2 8.2 1 0 14 J 511 keV E_0 = m_e c^2 \approx 8.2 \cdot 10^{-14} \,\text{J} \approx 511 \,\text{keV} Since the potential energy of the electron is comparable in magnitude to the rest energy, we need relativistic mechanics. The kinetic energy of the electron then is E kin = m c 2 m e c 2 = m e c 2 1 ( v / c ) 2 m e c 2 E_\text{kin} = m c^2 - m_e c^2 = \frac{m_e c^2}{\sqrt{1 - (v/c)^2}} - m_e c^2 where m m denotes the relativistic mass of the electron. In the case of low velocities ( v / c 1 v/c \ll 1 ), the classical approximation for the kinetic energy applies: E kin m e 2 v 2 + O ( ( v / c ) 4 ) E_\text{kin}\approx \frac{m_e}{2} v^2 + \mathcal{O}( (v/c)^4) In our case, however, we must take into account the relativistic corrections. When the potential energy is converted into kinetic energy ( E kin = E pot E_\text{kin} = E_\text{pot} ), it results e U = m e c 2 1 ( v / c ) 2 m e c 2 ε : = e U m e c 2 = 1 1 ( v / c ) 2 1 1 ε + 1 = 1 ( v / c ) 2 1 1 ( ε + 1 ) 2 = ( v / c ) 2 v = c 1 1 ( ε + 1 ) 2 = c 1 1 ( e U / ( m e c 2 ) + 1 ) 2 \begin{aligned} & & e U &= \frac{m_e c^2}{\sqrt{1 - (v/c)^2}} - m_e c^2 \\ \Rightarrow & & \varepsilon := \frac{eU}{m_e c^2} &= \frac{1}{\sqrt{1 - (v/c)^2}} - 1 \\ \Rightarrow & & \frac{1}{\varepsilon +1} &= \sqrt{1 - (v/c)^2} \\ \Rightarrow & & 1 - \frac{1}{(\varepsilon +1)^2} &= (v/c)^2 \\ \Rightarrow & & v &= c \sqrt{1 - \frac{1}{(\varepsilon +1)^2}} = c \sqrt{1 - \frac{1}{(eU/(m_e c^2) +1)^2}} \end{aligned} Insertion of the numerical values yields v 0.83 c 2.5 1 0 8 m/s v \approx 0.83\cdot c \approx 2.5 \cdot 10^8 \,\text{m/s} The graph below compares the velocity for the classical and the relativistic case as a function of kinetic energy

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...