Remainder (2)

Find the remainder when 2 5 9 + 5 9 2 + 9 2 5 \Large \color{#D61F06} 2^{5^{9}} + 5^{9^{2}} + 9^{2^{5}} is divided by 11 \color{#D61F06}11 .

5 7 6 8 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 21, 2017

Relevant wiki: Euler's Theorem

Since 2, 5, and 9 is each a coprime integer to 11, we can use Euler's theorem as follows:

2 5 9 + 5 9 2 + 9 2 5 2 5 9 mod ϕ ( 11 ) + 5 9 2 mod ϕ ( 11 ) + 9 2 5 mod ϕ ( 11 ) (mod 11) Euler’s totient function ϕ ( 11 ) = 10 2 5 9 mod 10 + 5 9 2 mod 10 + 9 2 5 mod 10 (mod 11) 2 5 + 5 81 mod 10 + 9 32 mod 10 (mod 11) 32 + 5 1 + 9 2 (mod 11) 10 + 5 + 4 (mod 11) 8 (mod 11) \begin{aligned} 2^{5^9} + 5^{9^2} + 9^{2^5} & \equiv 2^{5^9 \color{#3D99F6} \text{ mod }\phi (11)} + 5^{9^2 \color{#3D99F6} \text{ mod }\phi (11)} + 9^{2^5 \color{#3D99F6} \text{ mod }\phi (11)} \text{ (mod 11)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(11) = 10 \\ & \equiv 2^{5^9 \color{#3D99F6} \text{ mod }10} + 5^{9^2 \color{#3D99F6} \text{ mod }10} + 9^{2^5 \color{#3D99F6} \text{ mod }10} \text{ (mod 11)} \\ & \equiv 2^5 + 5^{81 \text{ mod }10} + 9^{32 \text{ mod }10} \text{ (mod 11)} \\ & \equiv 32 + 5^1 + 9^2 \text{ (mod 11)} \\ & \equiv 10 + 5 + 4 \text{ (mod 11)} \\ & \equiv \boxed{8} \text{ (mod 11)} \end{aligned}

Thank you so much. Nice and logical.

Hana Wehbi - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...