Remainder

Find the remainder when 222 2 5555 2222^{5555} is divided by 7?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Felipe Knöller
Aug 1, 2016

2222 3 ( m o d 7 ) 222 2 2 9 2 ( m o d 7 ) 222 2 3 6 ( m o d 7 ) 222 2 4 18 4 ( m o d 7 ) 222 2 5 12 5 ( m o d 7 ) 222 2 6 15 1 ( m o d 7 ) 2222\equiv 3 (mod 7)\\ 2222^2\equiv 9\equiv 2 (mod 7)\\ 2222^3\equiv 6 (mod 7)\\ 2222^4\equiv 18\equiv 4 (mod 7)\\ 2222^5\equiv 12\equiv 5 (mod 7)\\ 2222^6\equiv 15\equiv 1(mod 7)

The pattern repeats after this. Since 5 5555 5|5555 , 222 2 5555 222 2 5 5 ( m o d 7 ) 2222^{5555}\equiv 2222^5\equiv 5(mod 7)

Ankit Nigam
Aug 3, 2016

2222 5555 ( m o d 7 ) 3 5555 ( m o d 7 ) {2222}^{5555} \pmod7 \equiv 3^{5555} \pmod7

As 3 3 and 7 7 are co-prime, we can say that ( By Euler's Theorem )

3 ϕ ( 7 ) 1 ( m o d 7 ) 3^{\phi(7)} \equiv 1 \pmod7

3 5555 ( 3 6 925 ) 3 5 1 243 5 ( m o d 7 ) \therefore 3^{5555} \equiv (3^{6 \cdot 925}) \cdot 3^5 \equiv 1 \cdot 243 \equiv \boxed{5} \pmod7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...