Find the remainder of 3 3 × 3 3 3 3 × 3 3 3 3 3 3 × 3 3 3 3 3 3 3 3 when divided by 1 0 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you for sharing a nice solution. This question could also be "the last two digits".
We can shorten this solution by using the Carmichael's lambda function instead of Euler's totient function. λ ( 1 0 0 ) = 2 0 , so 3 3 × 3 3 1 9 ≡ 2 7 × 3 3 − 1 ≡ 2 7 × ( − 3 ) ≡ − 8 1 ≡ 1 9 ( m o d 1 0 0 ) because we can easily see that 3 3 − 1 ≡ − 3 ( m o d 1 0 0 ) .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Euler's Theorem
3 3 × 3 3 3 3 × 3 3 3 3 3 3 × 3 3 3 3 3 3 3 3 ≡ 3 3 × 3 3 3 3 × ( 3 0 0 + 3 3 ) 3 3 3 × ( 3 3 0 0 + 3 3 ) 3 3 3 3 (mod 100) ≡ 3 3 × 3 3 3 3 + 3 3 3 + 3 3 3 3 mod ϕ ( 1 0 0 ) (mod 100) Since g cd ( 3 3 , 1 0 0 ) = 1 , Euler’s theorem applies. ≡ 3 3 × 3 3 3 6 9 9 mod 4 0 (mod 100) Euler’s totient function ϕ ( 1 0 0 ) = 4 0 ≡ 3 3 × 3 3 1 9 (mod 100) ≡ 9 9 3 × 3 3 1 6 (mod 100) ≡ ( 1 0 0 − 1 ) 3 × 3 3 1 6 (mod 100) ≡ − 3 3 1 6 (mod 100) ≡ − 3 1 6 × 1 1 1 6 (mod 100) ≡ − ( 1 0 − 1 ) 8 ( 1 0 + 1 ) 8 ( 1 0 + 1 ) 8 (mod 100) ≡ − ( 1 0 0 − 1 ) 8 ( 1 0 8 + 8 × 1 0 7 + ⋯ + 8 × 1 0 + 1 ) (mod 100) ≡ − 8 1 (mod 100) ≡ 1 9 (mod 100)