Remainder

Find the remainder when 1 0 7 10^{7} is divided by 2003.

2 8 2^{8} 2 11 2^{11} 2 10 2^{10} 2 9 2^{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 30, 2017

1 0 7 1000 ( 10000 ) (mod 2003) 1000 ( 5 ) ( 2003 3 ) (mod 2003) 15000 (mod 2003) 979 (mod 2003) 1024 (mod 2003) 2 10 (mod 2003) \begin{aligned} 10^7 & \equiv 1000(10000) \text{ (mod 2003)} \\ & \equiv 1000(5)(2003-3) \text{ (mod 2003)} \\ & \equiv -15000 \text{ (mod 2003)} \\ & \equiv -979 \text{ (mod 2003)} \\ & \equiv 1024 \text{ (mod 2003)} \\ & \equiv \boxed{2^{10}} \text{ (mod 2003)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...