Remainder?

What is the remainder when 2 100 + 3 100 + 4 100 + 5 100 2^{100} + 3^{100} + 4^{100} + 5^{100} is divided by 7?

👉Try the second problem here👈

6 5 1 3 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 17, 2019

x ≡ 2 100 + 3 100 + 4 100 + 5 100 (mod 7) ≡ 2 100 + ( 7 − 4 ) 100 + 4 100 + ( 7 − 2 ) 100 (mod 7) ≡ 2 100 + ( − 4 ) 100 + 4 100 + ( − 2 ) 100 (mod 7) ≡ 2 × 2 100 + 2 × 4 100 (mod 7) ≡ 2 101 + 2 201 (mod 7) ≡ 2 2 × 2 3 × 33 + 2 3 × 67 (mod 7) ≡ 4 ( 7 + 1 ) 33 + ( 7 + 1 ) 67 (mod 7) ≡ 4 + 1 ≡ 5 (mod 7) \begin{aligned} x & \equiv 2^{100} + 3^{100} + 4^{100} + 5^{100} \text{ (mod 7)} \\ & \equiv 2^{100} + (7-4)^{100} + 4^{100} + (7-2)^{100} \text{ (mod 7)} \\ & \equiv 2^{100} + (-4)^{100} + 4^{100} + (-2)^{100} \text{ (mod 7)} \\ & \equiv 2\times 2^{100} + 2 \times 4^{100} \text{ (mod 7)} \\ & \equiv 2^{101} + 2^{201} \text{ (mod 7)} \\ & \equiv 2^2 \times 2^{3\times 33} + 2^{3\times 67} \text{ (mod 7)} \\ & \equiv 4(7+1)^{33} + (7+1)^{67} \text{ (mod 7)} \\ & \equiv 4 + 1 \equiv \boxed 5 \text{ (mod 7)} \end{aligned}

Jordan Cahn
Jan 16, 2019

By Fermat's Little Theorem , for a a not divisible by a prime p p , a n ≡ a n m o d p − 1 m o d p a^n \equiv a^{n\bmod p-1}\mod p . Thus 2 100 + 3 100 + 4 100 + 5 100 ≡ 2 100 m o d 6 + 3 100 m o d 6 + 4 100 m o d 6 + 5 100 m o d 6 m o d 7 ≡ 2 4 + 3 4 + 4 4 + 5 4 m o d 7 ≡ 2 + 4 + 4 + 2 m o d 7 ≡ 5 m o d 7 \begin{aligned} 2^{100}+3^{100}+4^{100} + 5^{100} &\equiv 2^{100 \bmod 6} + 3^{100\bmod 6} + 4^{100\bmod 6} + 5^{100\bmod 6} &\mod 7 \\ &\equiv 2^4 + 3^4 + 4^4 + 5^4 &\mod 7 \\ &\equiv 2 + 4 + 4 + 2 &\mod 7 \\ &\equiv \boxed{5} &\mod 7 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...