Remainder

What is the remainder obtained when 2 70 + 3 70 2^{70}+3^{70} is divided by 13 ? 13?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Felipe Knöller
Jul 30, 2016

Fermat's Little Theorem: a p a ( m o d p ) {a}^{p}\equiv a\pmod{p} , p p prime and a a integer

2 70 2 13 2 13 2 13 2 13 2 13 2 5 2 5 2 5 6 6 10 ( m o d 13 ) {2}^{70}\equiv {2}^{13}*2^{13}*2^{13}*2^{13}*2^{13}*2^5\equiv 2^5*2^5\equiv 6*6\equiv 10\pmod{13}

3 70 3 13 3 13 3 13 3 13 3 13 3 5 3 5 3 5 9 9 3 ( m o d 13 ) {3}^{70}\equiv 3^{13}*3^{13}*3^{13}*3^{13}*3^{13}*3^5\equiv 3^5*3^5\equiv 9*9\equiv 3\pmod{13}

2 70 + 3 70 10 + 3 0 ( m o d 13 ) 2^{70}+3^{70}\equiv 10+3\equiv 0\pmod{13}

in first line how to 6*6 come?

Anup Paul - 11 months, 2 weeks ago

Log in to reply

We know that 2^12 = 1 mod 13 (Fermat). Then (2^12)^(5) = 2^60 = 1^5 mod 13. So 2^70 = (2^60) (2^10) = 1 (2^10) mod 13. We can write 2^10 as (2^5) (2^5). 2^5 = 32 and that is congruent to 6 mod 13. So (2^5) (2^5) = 6*6 = 36 = 10 mod 13.

Alex Diko - 11 months, 1 week ago

6 is 2^5 mod 13

Justin Lee [STUDENT] - 10 months, 3 weeks ago

Log in to reply

Yes,2^5 =32. Then 32mod13= 32 is divided by 13 ,we get remainder =6. In this way 2^5mod13=6

Cuttie Sharma - 9 months, 2 weeks ago

2^5 % 13 = 32 % 13 = 6. Just calculate manually.

Md Mohsinur Rahman - 2 months ago
Ankit Chabarwal
Oct 17, 2016

From Fermat's little theorem

2 13 2 ( m o d 13 ) 2^{13} \equiv 2 \pmod{13}

2 14 2 2 ( m o d 13 ) \implies 2^{14} \equiv 2^2 \pmod{13}

( 2 14 ) 5 ( 2 2 ) 5 ( m o d 13 ) \implies (2^{14})^5 \equiv (2^2)^{5} \pmod{13}

2 70 2 10 2 4 2 4 2 2 3 3 4 10 ( m o d 13 ) \implies 2^{70} \equiv 2^{10} \equiv 2^4*2^4*2^2 \equiv 3*3*4 \equiv 10 \pmod{13}

Similarly,

3 70 3 10 3 3 3 3 3 3 3 1 1 1 3 3 ( m o d 13 ) 3^{70} \equiv 3^{10} \equiv 3^3*3^3*3^3*3 \equiv 1*1*1*3 \equiv 3 \pmod{13}

Therefore,

2 70 + 3 70 10 + 3 0 ( m o d 13 ) 2^{70}+3^{70} \equiv 10 +3 \equiv 0 \pmod{13}

Ankush Singla
Jun 28, 2017

a^n + b^n is divisable by a + b only when n is odd. 2^70 + 3^ 70 = 4^35 + 9^35 So 4+9=13... Therefore it completely divisable by 13. Answer is zero.

Gauri Agrawal
Aug 23, 2016

Using Fermat's Little Theorem (which states that a p a m o d p a^{p} \equiv {a} \mod\quad{p} , we have 2 70 2 65 2 5 2 5 13 2 5 32 13 32 32 32 6 2 36 3 m o d 13 2^{70} \equiv {{2}^{65}} * {{2}^{5}} \equiv {{2}^{5}}^{13} * {2}^{5} \equiv {{32}^{13}} * {32} \equiv {32} * {32} \equiv {{6}^{2}} \equiv {36} \equiv {-3} \quad\mod 13

In similar manner

3 70 3 5 13 3 5 243 2 4 2 16 3 m o d 13 {3}^{70} \equiv {{3}^{5}}^{13} * {3}^{5} \equiv {243}^{2} \equiv {-4}^{2} \equiv {16} \equiv {3} \quad\mod{13}

Adding together results in 3 + 3 0 m o d 13 {-3} + {3} \equiv \boxed{ 0} \quad\mod{13}

32 6 m o d 13 {32} \equiv {6} \quad\mod 13

gauri agrawal - 4 years, 9 months ago

How do you get from 32*32 to 6^2?

Alex Li - 4 years, 9 months ago

32 mod 13 = 6. Thus 32 * 32 mod 13 = 6*6 = 6^2 .

David Kolečkář - 2 years, 4 months ago

2 70 1024 7 ( 1014 + 10 ) 7 10 7 ( 13 3 ) 7 2187 10 ( m o d 13 ) 3 70 59049 7 ( 59046 + 3 ) 7 2187 3 ( m o d 13 ) 2 70 + 3 70 10 + 3 0 ( m o d 13 ) { 2 }^{ 70 }\equiv { 1024 }^{ 7 }\equiv { (1014+10) }^{ 7 }\equiv { 10 }^{ 7 }\equiv { (13-3) }^{ 7 }\equiv -2187\equiv 10(mod\quad 13)\\ { 3 }^{ 70 }\equiv { 59049 }^{ 7 }\equiv { (59046+3) }^{ 7 }\equiv 2187\equiv 3(mod\quad 13)\\ { 2 }^{ 70 }+{ 3 }^{ 70 }\equiv 10+3\equiv 0(mod\quad 13)

Ramiel To-ong
Jun 26, 2015

nice solution

Abhishek Bansal
Jul 22, 2018

2^70=2^72 * 2^-2(mod 13)=2^-2=4 3^70=3^72 * 3^-2(mod 13)=3^-2=9 then 2^70+3^70(mod 13)=4+9=13(mod 13)=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...