Remainder of a Big Quotient

What is the remainder when 3 45 3^{45} is divided by 125?

You may choose to refer to Euler's Theorem .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

3 45 = ( 3 5 ) 9 ( 7 ) 9 ( m o d 125 ) ( 7 3 ) 3 3 2 3 ( m o d 125 ) 2 15 ( 2 7 ) 2 × 2 ( m o d 125 ) 3 2 × 2 18 ( m o d 125 ) \begin{array}{l l l l} 3^{45} & = (3^5)^9 &\equiv (-7)^9 & \pmod{125} \\ & \equiv -(7^3)^3 & \equiv 32^3 & \pmod{125} \\ &\equiv 2^{15} &\equiv (2^7)^2 \times 2 & \pmod{125} \\ &\equiv 3^2 \times 2 &\equiv 18 & \pmod{125}\\ \end{array}

Hence, the required remainder is: 18.

There were numerous ways to approach this question. Paramit chanced upon 2 7 3 ( m o d 125 ) 2^7 \equiv 3 \pmod{125} . How can you use this fact to shorten the solution slightly (though, this is already pretty short).

Interestingly, though a large number of people got this correct, there were only 3 solutions that were submitted.

Calvin Lin Staff - 7 years ago
Calvin Lin Staff
May 13, 2014

Solution 1: We use the fact that 3 128 2 7 ( m o d 125 ) 3 \equiv 128 \equiv 2^7 \pmod{125} . Also, ϕ ( 125 ) = 4 5 × 125 = 100 \phi(125) = \frac {4}{5} \times 125 = 100 , so by Euler's Theorem, 2 100 1 ( m o d 125 ) 2^{100}\equiv 1 \pmod{125} . Hence, 3 45 ( 2 7 ) 45 2 315 2 15 2 7 × 2 7 × 2 = 3 × 3 × 2 18 ( m o d 125 ) 3^{45} \equiv (2^7)^{45} \equiv 2^{315} \equiv 2^{15} \equiv 2^7 \times 2^7 \times 2 = 3 \times 3 \times 2 \equiv 18 \pmod{125} .

Solution 2: We have 3 5 243 7 ( m o d 125 ) 3^5 \equiv 243 \equiv -7 \pmod{125} , and 7 4 2401 26 ( m o d 125 ) 7^4 \equiv 2401 \equiv 26 \pmod{125} . So 3 45 3 5 × 9 ( 7 ) 9 7 9 26 × 26 × 7 18 ( m o d 125 ) 3^{45} \equiv 3^{5 \times 9} \equiv (-7)^9 \equiv -7^9 \equiv - 26 \times 26 \times 7 \equiv 18 \pmod{125} .

sir if in this question they will ask find the last three digits of 3^45 then how can we do..plz reply @Calvin Lin

sakshi rathore - 5 years, 11 months ago

\­(3^45\­)=\­(3^40 \times 3^5\­) \­(3^5 \equiv 118 \pmod{125}\­) \­(3^10 \equiv 49 \pmod{125}\­) ----------\­(\frac {118 \times 118}{125}\­) \­(3^20 \equiv 26 \pmod{125}\­) ----------\­(\frac {49 \times 49}{125}\­) \­(3^40 \equiv 51 \pmod{125}\­) ----------\­(\frac {26 \times 26}{125}\­) \­(3^45 \equiv 18 \pmod{125}\­) ----------\­(\frac {51 \times 118}{125}\­)

Hence answer is remainder of \­(\frac {51 \times 118}{125}\­), which is equal to 18.

Sameer Kulkarni
May 20, 2014

3^4=1+5k, k=16 raise both sides to power 11 to get 3^44=1+(11)(5k)+other terms using binomial thm. other than 1st two terms contain 125, so 3^44=881mod(125). multiply by 3 and reduce mod 125

Lab Bhattacharjee
Dec 15, 2014

3^3=25+2,

Using Binomial expansion, 3^{45}=(3^3)^{15}=(2+25)^15=2^15+15.2^{14}.25+...(mod 125)≡2^{15},

Now 2^7≡3(mod 125) , 2^15=2.(2^7)^2≡2.3^2

Jaleb Jay
Nov 3, 2015

I have a strange way to answer this one:

We know ϕ ( 125 ) = 100 \phi(125)=100 , and 45 = ( 100 / 2 ) 5 45=(100/2)-5 , so 3 45 = 3 100 / 2 5 3^{45}=3^{100/2-5}\equiv

If 3 is a primitive root: ( 1 ) ( 3 1 ) 5 , (-1)(3^{-1})^5,

Else: ( 3 1 ) 5 . (3^{-1})^5.

Since ( 125 + 1 ) = 3 ( 42 ) (125+1)=3(42) we get:

( 42 ) 5 = ( ( 2 ) ( 3 ) ( 7 ) ) 5 = ( 32 ) ( 243 ) ( 16807 ) ( 32 ) ( 7 ) ( 57 ) 18. (42)^5 = ((2)(3)(7))^5=(32)(243)(16807) \equiv (32)(-7)(57) \equiv -18. Therefore, we get 18 if 3 is primitive, or 107 otherwise.

Edit: You can find 3 to be primitive as 3 2 + 4 n 4 m o d 5 3^{2+4n}\equiv 4 mod 5 , and 3 4 n 1 m o d 5 3^{4n}\equiv 1 mod 5 . Since 3 50 = 3 2 + 4 ( 12 ) 4 m o d 5 3^{50} = 3^{2+4(12)} \equiv 4 mod 5 , it is primitive. So the answer is simply 18.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...