Remainder of function

Let the function f(x) be defined by f ( x ) = 1 x + 2 x + 3 x + 4 x f\left( x \right) ={ 1 }^{ x }+{ 2 }^{ x }+{ 3 }^{ x }+{ 4 }^{ x } If the value of N is N = f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) + + f ( 2018 ) N=f\left( 1 \right) +f\left( 2 \right) +f\left( 3 \right) +f\left( 4 \right) +\dots +f\left( 2018 \right) Find the remainder when N is divided by 10


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Sep 26, 2018

We can find the last digit of each of 1 n , 2 n , 3 n , 4 n , f ( n ) 1^n, 2^n, 3^n, 4^n, f(n) as follows:

n 1 n 2 n 3 n 4 n f ( n ) 1 1 2 3 4 1 + 2 + 3 + 4 = 1 0 2 1 1 = 1 2 2 = 4 3 3 = 9 4 4 = 1 6 1 + 4 + 9 + 6 = 2 0 3 1 1 = 1 2 4 = 8 3 9 = 2 7 4 6 = 2 4 1 + 8 + 7 + 4 = 2 0 4 1 1 = 1 2 8 = 1 6 3 7 = 2 1 4 4 = 1 6 1 + 6 + 1 + 6 = 1 4 5 1 1 = 1 2 6 = 1 2 3 1 = 3 4 6 = 2 4 1 + 2 + 3 + 4 = 1 0 \begin{array}{c|c|c|c|c|c} n & 1^n & 2^n & 3^n & 4^n & f(n) \\ \hline \\ 1 & \mathbf{\color{#3D99F6}1} & \mathbf{\color{#3D99F6}2} & \mathbf{\color{#3D99F6}3} & \mathbf{\color{#3D99F6}4} & 1+2+3+4 = 1\mathbf{\color{#3D99F6}0} \\ 2 & 1\cdot 1 = \mathbf{\color{#3D99F6}1} & 2\cdot 2 = \mathbf{\color{#3D99F6}4} & 3\cdot 3 = \mathbf{\color{#3D99F6}9} & 4 \cdot 4 = 1\mathbf{\color{#3D99F6}6} & 1+4+9+6 = 2\mathbf{\color{#3D99F6}0} \\ 3 & 1\cdot 1 = \mathbf{\color{#3D99F6}1} & 2\cdot 4 = \mathbf{\color{#3D99F6}8} & 3\cdot 9 = 2\mathbf{\color{#3D99F6}7} & 4\cdot 6 = 2\mathbf{\color{#3D99F6}4} & 1+8+7+4 = 2\mathbf{\color{#3D99F6}0} \\ 4 & 1\cdot 1 = \mathbf{\color{#3D99F6}1} & 2\cdot 8 = 1\mathbf{\color{#3D99F6}6} & 3\cdot 7 = 2\mathbf{\color{#3D99F6}1} & 4\cdot 4 = 1\mathbf{\color{#3D99F6}6} & 1+6+1+6 = 1\mathbf{\color{#3D99F6}4} \\ 5 & 1\cdot 1 = \mathbf{\color{#3D99F6}1} & 2\cdot 6 = 1\mathbf{\color{#3D99F6}2} & 3\cdot 1 = \mathbf{\color{#3D99F6}3} & 4\cdot 6 = 2\mathbf{\color{#3D99F6}4} & 1+2+3+4 = 1\mathbf{\color{#3D99F6}0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}

Here, we note that the last digits in the row for n = 5 n=5 are identical to those in the row for n = 1 , n=1, so if we continued, the rows for n = 6 n=6 and n = 2 n=2 would be identical, etc. That is, this shows that the chart above will repeat every four rows. This tells us that

Last digit of f ( n ) = { 4 if n is a multiple of 4 0 otherwise \text{Last digit of } f(n) = \begin{cases}4 & \text{ if } n \text{ is a multiple of } 4 \\ 0 & \text{ otherwise} \end{cases}

from which we can conclude the last digit of f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 4 ) + + f ( 2018 ) f(1) + f(2) + f(3) + f(4) + \cdots + f(2018) is the same as the last digit of 4 # { positive multiples of 4 which are 2018 } = 4 2018 4 = 4 504 = 201 6 4 \cdot \#\{\text{positive multiples of } 4 \text{ which are } \leq 2018\} = 4\left\lfloor\frac{2018}{4}\right\rfloor = 4\cdot 504 = 201\mathbf{\color{#3D99F6}6} giving an answer of 6 \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...