Remainder? Part-2

Find the remainder when 1 2013 + 2 2013 + 3 2013 + β‹― + 201 2 2013 1^{2013} + 2^{2013} + 3^{2013} + \cdots + 2012^{2013} is divided by 2013 2013 .

πŸ‘‰Try the first problem hereπŸ‘ˆ


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Apr 25, 2019

Just pair the terms up, and use the fact that a + b ∣ a n + b n a+b|a^n+b^n for odd positive n n (NB the notation x ∣ y x|y means " x x divides y y "):

2013 ∣ 1 2013 + 201 2 2013 2013|1^{2013}+2012^{2013}

2013 ∣ 2 2013 + 201 1 2013 2013|2^{2013}+2011^{2013}

2013 ∣ 3 2013 + 201 0 2013 2013|3^{2013}+2010^{2013}

...etc. So the whole sum is a multiple of 2013 2013 , and the remainder is 0 \boxed0 .

Chew-Seong Cheong
Apr 25, 2019

For positive integers a a , b b , and n n , where n n is odd, we can write a n + b n = ( a + b ) ( a n βˆ’ 1 + a n βˆ’ 2 b + a n βˆ’ 3 b 2 + β‹― + a b n βˆ’ 2 + b n βˆ’ 1 ) \displaystyle a^n+b^n = (a+b) \left(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + ab^{n-2} + b^{n-1}\right) . This means that a n + b n a^n+b^n is a multiple of a + b a+b . Similarly, for S = 1 2013 + 2 2013 + 3 2013 + β‹― + 201 2 2013 S = 1^{2013} + 2^{2013} + 3^{2013} + \cdots + 2012^{2013} , we can pair the end terms together 1 2013 + 201 2 2013 1^{2013} + 2012^{2013} , 2 2013 + 201 1 2013 2^{2013} + 2011^{2013} , 3 2013 + 201 0 2013 3^{2013} + 2010^{2013} , β‹― , 100 6 2013 + 100 7 2013 \cdots, 1006^{2013} + 1007^{2013} . Since every one of the 1006 pair sums is divisible by k + 2013 βˆ’ k = 2013 k+2013-k=2013 , S S is also divisible by 2013 2013 and the remainder is 0 \boxed 0 .

0 pending reports

Γ—

Problem Loading...

Note Loading...

Set Loading...