Remainder Problem 4

Find the remainder when 3 181 3^{181} is divided by 17 17 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aaaaa Bbbbb
Jul 6, 2014

According to Fermat's little theorem 3 16 1 = 17 k , 3 181 = 3 16 i 3 5 = ( 17 k + 1 ) i ( 17 y + 5 ) 3^{16} - 1 = 17 k, 3^{181}=3^{16i}*3^5=(17k+1)^i*(17y+5) 3 181 m o d 7 = 5 \Rightarrow 3^{181} \mod{7} = \boxed{5}

You might want to edit the last line to say 17, not 7. Not to confuse anyone :)

Jaleb Jay - 5 years, 2 months ago
Akshat Sharda
Sep 22, 2015

I'm gonna provide you the Basic Method :

= 3 181 = ( 3 4 ) 45 3 = 8 1 45 3 =3^{181}=(3^{4})^{45}\cdot 3=81^{45}\cdot 3

Now , 81 4 m o d 17 81 \equiv -4 \mod{17}

= 8 1 45 3 = ( 4 ) 45 3 =81^{45}\cdot 3=(-4)^{45}\cdot 3

= ( ( 4 ) 2 ) 22 4 3 =((-4)^{2})^{22}\cdot -4\cdot 3

= ( 16 ) 22 4 3 =(16)^{22}\cdot -4\cdot 3

Now , 16 1 m o d 17 16 \equiv -1 \mod{17}

= ( 1 ) 22 4 3 = 4 3 =(-1)^{22}\cdot -4\cdot3=-4\cdot 3

= 12 =-12

Remainder = 17 12 = 5 17-12=\boxed{5}

Kenny Lau
Jul 9, 2014

From Fermat's Little Theorem, 3 181 m o d 17 = 3 181 m o d 16 m o d 17 = 3 ( 181 160 ) m o d 16 m o d 17 = 3 21 m o d 16 m o d 17 = 3 21 16 m o d 17 = 3 5 m o d 17 = 243 m o d 17 = ( 243 170 ) m o d 17 = 73 m o d 17 = ( 73 17 ) m o d 17 = 56 m o d 17 = ( 56 51 ) m o d 17 = 5 \begin{array}{llr} &3^{181}&\mod17 \\=&3^{181\mod16}&\mod17 \\=&3^{(181-160)\mod16}&\mod17 \\=&3^{21\mod16}&\mod17 \\=&3^{21-16}&\mod17 \\=&3^5&\mod17 \\=&243&\mod17 \\=&(243-170)&\mod17 \\=&73&\mod17 \\=&(73-17)&\mod17 \\=&56&\mod17 \\=&(56-51)&\mod17 \\=&5 \end{array} This may be a bit long, but this is how I calculate it in my heart.

Can you tell me what is "mod"? Is this the "mod" of modulus

Manish Mayank - 6 years, 11 months ago

Log in to reply

Yeah!! :-)

Nandini Rajput - 6 years, 10 months ago

no its remainder

Shaik Sameer - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...