Remainder Properties #1

Find the remainder when 9 505 × 3 1011 + 1 9^{505}\times{3^{1011}+1} is divided by 5 5 .

Too easy? Challenge here!

1 0 3 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 22, 2021

9 505 × 3 1011 + 1 9 505 × 3 2 × 505 + 1 + 1 ( m o d 5 ) 9 505 × 9 505 × 3 + 1 ( m o d 5 ) 9 1010 × 3 + 1 ( m o d 5 ) ( 10 1 ) 1010 × 3 + 1 ( m o d 5 ) ( 1 ) 1010 × 3 + 1 ( m o d 5 ) 3 + 1 ( m o d 5 ) 4 ( m o d 5 ) \begin{aligned} 9^{505} \times 3^{1011} + 1 & \equiv 9^{505} \times 3^{2\times 505+1} + 1 \pmod 5 \\ & \equiv 9^{505} \times 9^{505} \times 3 + 1 \pmod 5 \\ & \equiv 9^{1010} \times 3 + 1 \pmod 5 \\ & \equiv (10-1)^{1010} \times 3 + 1 \pmod 5 \\ & \equiv (-1)^{1010} \times 3 + 1 \pmod 5 \\ & \equiv 3 + 1 \pmod 5 \\ & \equiv \boxed 4 \pmod 5 \end{aligned}

Saya Suka
Apr 21, 2021

I used logic. The mod 5 will cycle around after 4 answers (without the plus 1, it's never going to be 0 so 5 – 1 = 4) so I changed the numbers into base 3 and modded the exponent with 4.

{ 1 + 9^505 × 3^1011 } mod 5
= { 1 + (3^2)^505 × 3^1011 } mod 5
= { 1 + 3^1010 × 3^1011 } mod 5
= { 1 + 3^(1010 + 1011) } mod 5
= { 1 + 3^2021 } mod 5
= { 1 + 3^[ 2021 mod 4 ] } mod 5
= { 1 + 3^[ 1 mod 4 ] } mod 5
= { 1 + 3^1 } mod 5
= { 1 + 3 } mod 5
= 4


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...