Remainder Properties #2

Find the remainder when

1 2017 + 2 2018 + 3 2019 + 4 2020 + 5 2021 + 6 2022 + 7 2023 + 8 2024 + 9 2025 1^{2017}+2^{2018}+3^{2019}+4^{2020}+5^{2021}+6^{2022}+7^{2023}+8^{2024}+9^{2025}

is divided by 5 5 .

3 1 0 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 23, 2021

Since 5 5 is a prime, Euler's theorem applies and Euler's totient function ϕ ( 5 ) = 5 1 = 4 \phi(5)=5-1 = 4 . Then we have:

n = 1 9 n 2016 + n n = 1 9 n 2016 + n m o d ϕ ( 5 ) n = 1 9 n 2016 + n m o d 4 n = 1 9 n n m o d 4 ( m o d 5 ) = 1 1 + 2 2 + 3 3 + 4 0 + 5 1 + 6 2 + 7 3 + 8 0 + 9 1 ( m o d 5 ) = 1 + 4 + 2 + 1 + 0 + 1 2 + 2 3 + 1 + 4 ( m o d 5 ) = 1 + 4 + 2 + 1 + 0 + 1 + 3 + 1 + 4 ( m o d 5 ) = 2 ( m o d 5 ) \begin{aligned} \sum_{n=1}^9 n^{2016+n} & \equiv \sum_{n=1}^9 n^{2016+n \bmod \phi (5)} \equiv \sum_{n=1}^9 n^{2016+n \bmod 4} \equiv \sum_{n=1}^9 n^{n \bmod 4} \pmod 5 \\ & = 1^1 + 2^2 + 3^3 + 4^0 + 5^1 + 6^2 + 7^3 + 8^0 + 9^1 \pmod 5 \\ & = 1 + 4 + 2 + 1 + 0 + 1^2 + 2^3 + 1 + 4 \pmod 5 \\ & = 1 + 4 +2 + 1 + 0 + 1 + 3 + 1 + 4 \pmod 5 \\ & = \boxed 2 \pmod 5 \end{aligned}

Also the numbers after 5 can be reduced, but still it is a short solution. Nice!

Vinayak Srivastava - 1 month, 2 weeks ago
Saya Suka
Apr 23, 2021

Answer
= { 1^2017 + 2^2018 + 3^2019 + 4^2020 + 5^2021 + 6^2022 + 7^2023 + 8^2024 + 9^2025 } mod 5
= { 1^(2017 mod 4) + 2^(2018 mod 4) + 3^(2019 mod 4) + 4^(2020 mod 4) + 5^(2021 mod 4) + 6^(2022 mod 4) + 7^(2023 mod 4) + 8^(2024 mod 4) + 9^(2025 mod 4) } mod 5
= { 1^1 + 2^2 + 3^3 + 4^0 + 5^1 + 6^2 + 7^3 + 8^0 + 9^1 } mod 5
= { 1 + 4 + 2 + 1 + 0 + 1 + 3 + 1 + 4 } mod 5
= 17 mod 5
= 2


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...