Remainder when divided by 15

Level 2

What is the remainder when

7 23 + 8 79 + 1 1 105 7^{23}+8^{79}+11^{105}

is divided by 15?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenny Lau
Jan 1, 2014

7 23 + 8 79 + 1 1 105 7 + 8 + 11 2 (mod 3) \begin{array}{rcl} &7^{23}+8^{79}+11^{105}\\ \equiv&7+8+11\\ \equiv&2 \end{array}\\\mbox{(mod 3)}

7 23 + 8 79 + 1 1 105 7 3 + 8 3 + 11 2 3 + 3 3 + 1 8 + 27 + 1 1 (mod 5) \begin{array}{rcl} &7^{23}+8^{79}+11^{105}\\ \equiv&7^3+8^3+11\\ \equiv&2^3+3^3+1\\ \equiv&8+27+1\\ \equiv&1 \end{array}\\\mbox{(mod 5)}

7 23 + 8 79 + 1 1 105 2 (mod 5) \therefore7^{23}+8^{79}+11^{105}\equiv2\mbox{(mod 5)}

sorry, the final answer should be 11(mod 5), I have no idea why I wrote 2

Kenny Lau - 7 years, 5 months ago

Log in to reply

And the key point is to use fermat's little theorem.

Kenny Lau - 7 years, 5 months ago

How have you reduced the terms ??

Chirayu Bhardwaj - 5 years, 2 months ago
Zakir Husain
Apr 15, 2021

7 23 7 × 7 22 7 × 4 9 11 7 × 4 11 7 × 4 × 4 10 28 × 1 6 5 7^{23}\equiv 7\times 7^{22}\equiv 7\times 49^{11}\equiv 7\times 4^{11}\equiv 7\times 4 \times 4^{10}\equiv 28\times 16^5 28 × 1 5 28 13 ( m o d 15 ) \equiv 28\times 1^{5}\equiv 28\equiv 13 \space (\bmod 15) 8 79 8 × 8 78 8 × 6 4 39 8 × 4 39 32 × 4 38 2 × 1 6 19 8^{79}\equiv 8\times 8^{78}\equiv 8\times 64^{39}\equiv 8\times 4^{39}\equiv 32\times 4^{38}\equiv 2\times 16^{19} 2 × 1 19 2 ( m o d 15 ) \equiv 2\times 1^{19}\equiv 2\space (\bmod 15) 1 1 105 11 × 1 1 104 11 × 12 1 52 11 × 1 52 11 ( m o d 15 ) 11^{105}\equiv 11\times 11^{104}\equiv 11\times 121^{52}\equiv 11\times 1^{52}\equiv 11\space (\bmod 15) 7 23 + 8 79 + 1 1 105 13 + 2 + 11 11 ( m o d 15 ) \Rightarrow 7^{23}+8^{79}+11^{105}\equiv \red{13+2}+11\equiv 11 (\bmod 15)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...