Remainders

Find the remainder of 2 5 9 + 5 9 2 + 9 2 5 \large 2^{5^{9}}+5^{9^{2}}+9^{2^{5}} when divided by 11. 11.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jordan Cahn
Dec 18, 2018

Relevant wiki: Fermat's Little Theorem

We use Fermat's Little Theorem which states that a p 1 1 m o d p a^{p-1}\equiv 1\bmod p for prime p p and a a not divisible by p p . Equivalently, a n a n m o d ( p 1 ) m o d p a^n \equiv a^{n \bmod (p-1)}\bmod p . Thus 2 5 9 + 5 9 2 + 9 2 5 2 5 9 m o d 10 + 5 9 2 m o d 10 + 9 2 5 m o d 10 m o d 11 2 5 + 5 1 + 9 2 m o d 11 1 + 5 + 4 m o d 11 8 m o d 11 \begin{aligned} 2^{5^9} + 5^{9^2} + 9^{2^5} &\equiv 2^{5^9 \bmod 10} + 5^{9^2 \bmod 10} +9^{2^5\bmod 10} && \bmod 11\\ &\equiv 2^5 + 5^1 + 9^2 && \bmod 11 \\ &\equiv -1 + 5 + 4 && \bmod 11 \\ &\equiv \boxed{8} && \bmod 11 \end{aligned}

Nice solution. Thank you for sharing it.

Hana Wehbi - 2 years, 5 months ago
Chew-Seong Cheong
Dec 19, 2018

Relevant wiki: Euler's Theorem

Similar solution with @Jordan Cahn's

2 5 9 + 5 9 2 + 9 2 5 2 5 9 m o d ϕ ( 11 ) + 5 9 2 m o d ϕ ( 11 ) + 9 2 5 m o d ϕ ( 11 ) (mod 11) Since gcd ( 2 , 11 ) = gcd ( 5 , 11 ) = gcd ( 9 , 11 ) = 1 , Euler’s theorem applies. 2 5 9 m o d 10 + 5 9 2 m o d 10 + 9 2 5 m o d 10 (mod 11) Euler’s totient function ϕ ( 11 ) = 11 1 = 10 2 5 + 5 ( 10 1 ) 2 m o d 10 + 9 32 m o d 10 (mod 11) Powers of 5 always end with 25 5 n m o d 10 = 5 2 5 + 5 1 + 9 2 (mod 11) 32 + 5 + 81 (mod 11) 1 + 5 + 4 (mod 11) 8 (mod 11) \begin{aligned} 2^{5^9} + 5^{9^2} + 9^{2^5} & \equiv 2^{\color{#3D99F6}5^9 \bmod \phi(11)} + 5^{\color{#3D99F6}9^2 \bmod \phi(11)} + 9^{\color{#3D99F6}2^5 \bmod \phi(11)} \text{ (mod 11)} & \small \color{#3D99F6} \text{Since }\gcd (2,11) = \gcd (5,11) = \gcd(9,11) = 1 \text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}5^9 \bmod 10} + 5^{\color{#3D99F6}9^2 \bmod 10} + 9^{\color{#3D99F6}2^5 \bmod 10} \text{ (mod 11)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (11) = 11-1 = 10 \\ & \equiv 2^{\color{#3D99F6}5} + 5^{(10-1)^2 \bmod 10} + 9^{32 \bmod 10} \text{ (mod 11)} & \small \color{#3D99F6} \text{Powers of 5 always end with 25 } \implies 5^n \bmod 10 = 5 \\ & \equiv 2^5 + 5^1 + 9^2 \text{ (mod 11)} \\ & \equiv 32 + 5 + 81 \text{ (mod 11)} \\ & \equiv -1 + 5 + 4 \text{ (mod 11)} \\ & \equiv \boxed 8 \text{ (mod 11)} \end{aligned}

Log in to reply

Yes, you used Fermat's litter theorem and I used Euler's Theorem.

Chew-Seong Cheong - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...