Remainders Are Fun

Evaluate:

( 1007 × 1008 × 1009 × 1010 × × 2019 ) m o d 1010 ! . (1007 \times 1008 \times 1009 \times 1010 \times \cdots \times 2019) \bmod{1010!} \ .


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


For more problems like this, try answering this set .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Moehring
Feb 17, 2017

Note that 1007 × 1008 × 1009 × 1010 × × 2019 1010 ! = 1007 × 1008 × 1009 × 1010 × 1011 × × 2019 1010 ! = 1007 × 1008 × 1009 × 2019 ! 1010 ! × 1009 ! = 1007 × 1008 × 1009 × ( 2019 1010 ) N \begin{aligned} \frac{1007 \times 1008 \times 1009 \times 1010 \times \cdots \times 2019}{1010!} &= 1007 \times 1008 \times 1009 \times \frac{1010\times 1011 \times \cdots \times 2019}{1010!} \\ &= 1007 \times 1008 \times 1009 \times \frac{2019!}{1010! \times 1009!} \\ &= 1007 \times 1008 \times 1009 \times \binom{2019}{1010} \in \mathbb{N} \end{aligned} so that 1010 ! 1010! evenly divides the product and 1007 × 1008 × 1009 × 1010 × × 2019 0 ( m o d 1010 ! ) . 1007 \times 1008 \times 1009 \times 1010 \times \cdots \times 2019 \equiv \boxed{0} \pmod{1010!}.

Christian Daang
Feb 17, 2017

1007 × 1008 × 1009 × × 2019 1013 ! = ( 1 × 2 × × 1006 ) ( 1007 × 1008 × × 2019 ) ( 1 × 2 × × 1006 ) ( 1 × 2 × × 1013 ) = 2019 ! ( 1006 ! ) ( 1013 ! ) \begin{aligned} \cfrac{1007\times1008\times1009\times \cdots \times 2019}{1013!} & = \cfrac{(1\times2\times \cdots \times1006)(1007\times1008\times \cdots \times2019)}{(1\times2\times \cdots \times1006)(1\times2\times \cdots \times1013)} \\ & = \cfrac{2019!}{(1006!)(1013!)} \end{aligned} 1007 × 1008 × 1009 × × 2019 1010 ! = ( 1 × 2 × × 1006 ) ( 1007 × 1008 × × 2019 ) ( 1 × 2 × × 1006 ) ( 1 × 2 × × 1013 ) × ( 1013 × 1012 × 1011 ) = 2019 ! × ( 1013 × 1012 × 1011 ) ( 1006 ! ) ( 1013 ! ) \begin{aligned} \cfrac{1007\times1008\times1009\times \cdots \times 2019}{1010!} & = \cfrac{(1\times2\times \cdots \times1006)(1007\times1008\times \cdots \times2019)}{(1\times2\times \cdots \times1006)(1\times2\times \cdots \times1013)} \times (1013\times 1012\times 1011) \\ & = \cfrac{2019! \times (1013\times 1012\times 1011)}{(1006!)(1013!)} \end{aligned}

it means that: ( 1007 × 1008 × 1009 × 1010 × × 2019 ) m o d 1010 ! ( 2019 ! × ( 1013 × 1012 × 1011 ) ) m o d ( 1006 ! × 1013 ! ) [ ( ( 2019 ! ) m o d ( 1006 ! × 1013 ! ) ) × ( ( 1013 × 1012 × 1011 ) m o d ( 1006 ! × 1013 ! ) ) ] m o d ( 1006 ! × 1013 ! ) ( 0 × 1 ) m o d ( 1006 ! × 1013 ! ) = 0 \large \begin{aligned} ( 1007 \times 1008 \times 1009 \times 1010 \times \cdots \times 2019 ) \mod 1010! & \equiv \big( 2019! \times (1013\times 1012\times 1011) \big) \mod (1006! \times 1013!) \\ & \equiv \Big[ \left( (2019!) \mod ( 1006! \times 1013! )\right) \times \left( (1013\times 1012\times 1011) \mod ( 1006! \times 1013! ) \right)\Big] \mod ( 1006! \times 1013! ) \\ & \equiv (0 \times1) \mod (1006! \times 1013!) \\ & = \boxed{0} \end{aligned}

It seems that in the question you wanted to ask ( m o d 1013 ! ) \pmod{1013!} and wrote it by mistake .Am I right??

You must fix that up if such is a case.

Ankit Kumar Jain - 4 years, 3 months ago

Log in to reply

nope, i just try to use the fact that the expression mod 1013! is 0.

Christian Daang - 4 years, 3 months ago
Ankit Kumar Jain
Mar 9, 2017

The product of r r consecutive integers is divisible by r ! r! .

1010 × 1011 × 1012 × × 2019 1010 consecutive numbers \underbrace{1010\times{1011}\times{1012}\times \cdot \cdot \cdot \times{2019}}_{\text{1010 consecutive numbers}} is divisible by 1010 ! 1010! .

\therefore Our answer is 0 \boxed{0}

N O T E \underline{NOTE}

The terms 1007 × 1008 × 1009 1007\times{1008}\times{1009} were extraneous.

So , we can even prove the number above to be divisible by 1013 ! 1013! .

1007 × 1008 × 1009 × 1010 × × 2019 1013 consecutive numbers \underbrace{1007 \times 1008 \times 1009 \times 1010 \times \cdots \times 2019}_{\text{1013 consecutive numbers}} is divisible by 1013 ! 1013!

See sir @Brian Moehring 's solution for much clear solution. :)

The problem above was just like ab mod c where b mod c = 0. :)

Christian Daang - 4 years, 3 months ago

Log in to reply

I too used that fact , I proved the it to be divisible by 1013 ! 1013! and hence by 1010 ! 1010! .

And @Brian Moehring has done it well , he proved the fact that I used. :)

Even the fact that I stated can be proved as follows : (I am not that sure of this)

Among any r r consecutive numbers , we definitely have a multiple of r r , a multiple of r 1 r - 1 , a multiple of r 2 r - 2 \cdots a multiple of 2 2 and hence it is divisible by r ! r!

Ankit Kumar Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...