Remainders Ahead!

Algebra Level 3

Let the remainder when f ( x ) = x 101 f(x) = x^{101} is divided by g ( x ) = x 2 + 3 x + 2 g(x) = x^2+3x+2 be a x + b ax+b . Find the value of 2 50 b a + 1 + 2 51 + 1 \dfrac {2^{50}b}{a+1+2^{51}}+1 .

2 151 2^{151} 2 50 2^{50} 2 101 2^{101} 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2018

Relevant wiki: Remainder Factor Theorem - Intermediate

Let

f ( x ) = g ( x ) q ( x ) + r ( x ) where r ( x ) is the remainder polynomial. x 101 = ( x 2 + 3 x + 2 ) q ( x ) + a x + b Note that r ( x ) has a maximum degree of 1. x 101 = ( x + 1 ) ( x + 2 ) q ( x ) + a x + b Putting x = 1 1 = a + b . . . ( 1 ) Putting x = 2 2 101 = 2 a + b . . . ( 2 ) \begin{aligned} f(x) & = g(x) q(x) + \color{#3D99F6} r(x) & \small \color{#3D99F6} \text{where }r(x) \text{ is the remainder polynomial.} \\ x^{101} & = (x^2+3x+2)q(x) + \color{#3D99F6} ax+b & \small \color{#3D99F6} \text{Note that }r(x) \text{ has a maximum degree of 1.} \\ x^{101} & = (x+1)(x+2)q(x) + ax+b & \small \color{#3D99F6} \text{Putting }x=-1 \\ -1 & = -a+b \quad ...(1) & \small \color{#3D99F6} \text{Putting }x=-2 \\ -2^{101} & = -2a+b \quad ...(2) \end{aligned}

( 1 ) ( 2 ) : a = 2 101 1 ( 1 ) : b = a 1 = 2 101 2 \begin{aligned} (1)-(2): \quad a & = 2^{101}-1 \\ (1): \quad b & = a-1 = 2^{101}-2 \end{aligned}

Therefore,

2 50 b a + 1 + 2 51 + 1 = 2 50 ( 2 101 2 ) 2 101 1 + 1 + 2 51 + 1 = 2 50 ( 2 101 2 ) + 2 101 + 2 51 2 101 + 2 51 = 2 50 ( 2 101 + 2 51 ) 2 101 + 2 51 = 2 50 \begin{aligned} \frac {2^{50}b}{a+1+2^{51}}+1 & = \frac {2^{50}(2^{101}-2)}{2^{101}-1+1+2^{51}}+1 \\ & = \frac {2^{50}(2^{101}-2) +2^{101}+2^{51} }{2^{101}+2^{51}} \\ & = \frac {2^{50}(2^{101}+2^{51})}{2^{101}+2^{51}} \\ & = \boxed{2^{50}} \end{aligned}

Thank you.

Rudrayan Kundu - 2 years, 11 months ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 2 years, 11 months ago
Rudrayan Kundu
Jun 29, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...