Remainders Revisited #4

Number Theory Level pending

4 4 7 23 m o d 25 = ? \Large 4^{47^ {23}} \bmod 25 = \, ?

8 14 3 24

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 2, 2015

Note 4 5 = 1024 1 ( m o d 25 ) 4^5=1024\equiv -1\pmod{25} . Moreover, mod 10

4 7 23 7 23 ( 1 ) 11 7 7 3 ( m o d 10 ) 47^{23}\equiv 7^{23}\equiv (-1)^{11}\cdot7\equiv-7\equiv 3\pmod{10} .

Therefore, there exists an integer n n so that 4 7 23 = 10 n + 3 47^{23}=10n+3 . Then mod 25

4 4 7 23 = 4 10 n + 3 = ( 4 5 ) 2 n 64 ( 1 ) 2 n 14 14 ( m o d 25 ) 4^{47^{23}}=4^{10n+3}=(4^5)^{2n}\cdot64\equiv (-1)^{2n}\cdot 14\equiv\boxed{14}\pmod{25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...