a + b c 1 + b + a c 1 + c + a b 1 = ( 1 + b a ) ( 1 + c b ) ( 1 + a c ) x
Let a , b and c be positive real numbers satisfying a 1 + b 1 + c 1 = 1 , find the value of x satisfying the algebraic identity above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Wonderful. I think the question is harder than level 2 algebra
Log in to reply
I think so too. It took me more than half an hour to factorize it completely
Problem Loading...
Note Loading...
Set Loading...
a + b c 1 + b + a c 1 + c + a b 1 = ( 1 + b a ) ( 1 + c b ) ( 1 + a c ) x
Given that a 1 + b 1 + c 1 = 1 ⟹ Eq.(1)
a b c b c + a c + a b = 1
a b + a c + b c = a b c ⟹ Eq.(2)
We will use these two equations to manipulate the identity.
Use Eq.(2) on the LHS:
a + b c 1 + b + a c 1 + c + a b 1 = a + a b c − a b − a c 1 + b + a b c − a b − b c 1 + c + a b c − a c − b c 1 = a ( b c − b − c + 1 ) 1 + b ( a c − a − c + 1 ) 1 + c ( a b − a − b + 1 ) 1 = a ( b − 1 ) ( c − 1 ) 1 + b ( a − 1 ) ( c − 1 ) 1 + c ( a − 1 ) ( b − 1 ) 1
Next, we use Eq.(1) on the RHS:
( 1 + b a ) ( 1 + c b ) ( 1 + a c ) x = a ( a 1 + b 1 ) b ( b 1 + c 1 ) c ( c 1 + a 1 ) x = a b c ( 1 − c 1 ) ( 1 − a 1 ) ( 1 − b 1 ) x = a b c ( c c − 1 ) ( a a − 1 ) ( b b − 1 ) x = a b c ( a b c ( c − 1 ) ( a − 1 ) ( b − 1 ) ) x = ( a − 1 ) ( b − 1 ) ( c − 1 ) x
We equate the LHS and RHS again:
a ( b − 1 ) ( c − 1 ) 1 + b ( a − 1 ) ( c − 1 ) 1 + c ( a − 1 ) ( b − 1 ) 1 = ( a − 1 ) ( b − 1 ) ( c − 1 ) x ( a − 1 ) ( b − 1 ) ( c − 1 ) ( a ( b − 1 ) ( c − 1 ) 1 + b ( a − 1 ) ( c − 1 ) 1 + c ( a − 1 ) ( b − 1 ) 1 ) = x x = a ( b − 1 ) ( c − 1 ) ( a − 1 ) ( b − 1 ) ( c − 1 ) + b ( a − 1 ) ( c − 1 ) ( a − 1 ) ( b − 1 ) ( c − 1 ) + c ( a − 1 ) ( b − 1 ) ( a − 1 ) ( b − 1 ) ( c − 1 ) = a a − 1 + b b − 1 + c c − 1 = 1 − a 1 + 1 − b 1 + 1 − c 1 = 3 − ( a 1 + b 1 + c 1 ) = 3 − 1 x = 2