Remarkable Question

Algebra Level 3

1 a + b c + 1 b + a c + 1 c + a b = x ( 1 + a b ) ( 1 + b c ) ( 1 + c a ) \large \dfrac1{a+bc} +\dfrac1{b+ac} + \dfrac1{c+ab} = \dfrac x{ \left(1 + \frac ab\right)\left(1 + \frac bc\right)\left(1 + \frac ca\right) }

Let a , b a,b and c c be positive real numbers satisfying 1 a + 1 b + 1 c = 1 \dfrac1a + \dfrac1b + \dfrac1c = 1 , find the value of x x satisfying the algebraic identity above.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
May 13, 2016

1 a + b c + 1 b + a c + 1 c + a b = x ( 1 + a b ) ( 1 + b c ) ( 1 + c a ) \dfrac{1}{a+bc} + \dfrac{1}{b+ac} + \dfrac{1}{c+ab} = \dfrac{x}{\left(1+\dfrac{a}{b} \right) \left(1+\dfrac{b}{c} \right) \left(1+\dfrac{c}{a} \right)}\\

Given that 1 a + 1 b + 1 c = 1 \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1 \implies Eq.(1)

b c + a c + a b a b c = 1 \dfrac{bc+ac+ab}{abc}=1

a b + a c + b c = a b c ab+ac+bc=abc \implies Eq.(2)

We will use these two equations to manipulate the identity.

Use Eq.(2) on the LHS:

1 a + b c + 1 b + a c + 1 c + a b = 1 a + a b c a b a c + 1 b + a b c a b b c + 1 c + a b c a c b c = 1 a ( b c b c + 1 ) + 1 b ( a c a c + 1 ) + 1 c ( a b a b + 1 ) = 1 a ( b 1 ) ( c 1 ) + 1 b ( a 1 ) ( c 1 ) + 1 c ( a 1 ) ( b 1 ) \dfrac{1}{a+bc} + \dfrac{1}{b+ac} + \dfrac{1}{c+ab}\\ =\dfrac{1}{a+abc-ab-ac} + \dfrac{1}{b+abc-ab-bc} + \dfrac{1}{c+abc-ac-bc}\\ =\dfrac{1}{a(bc-b-c+1)} + \dfrac{1}{b(ac-a-c+1)} + \dfrac{1}{c(ab - a- b+1)}\\ =\dfrac{1}{a(b-1)(c-1)} + \dfrac{1}{b(a-1)(c-1)} + \dfrac{1}{c(a-1)(b-1)}

Next, we use Eq.(1) on the RHS:

x ( 1 + a b ) ( 1 + b c ) ( 1 + c a ) = x a ( 1 a + 1 b ) b ( 1 b + 1 c ) c ( 1 c + 1 a ) = x a b c ( 1 1 c ) ( 1 1 a ) ( 1 1 b ) = x a b c ( c 1 c ) ( a 1 a ) ( b 1 b ) = x a b c ( ( c 1 ) ( a 1 ) ( b 1 ) a b c ) = x ( a 1 ) ( b 1 ) ( c 1 ) \dfrac{x}{\left(1+\dfrac{a}{b} \right) \left(1+\dfrac{b}{c} \right) \left(1+\dfrac{c}{a} \right)}\\ =\dfrac{x}{a\left(\dfrac{1}{a}+\dfrac{1}{b} \right) b\left(\dfrac{1}{b}+\dfrac{1}{c} \right) c\left(\dfrac{1}{c}+\dfrac{1}{a} \right)}\\ =\dfrac{x}{abc\left(1-\dfrac{1}{c} \right) \left(1-\dfrac{1}{a} \right) \left(1-\dfrac{1}{b} \right)}\\ =\dfrac{x}{abc\left(\dfrac{c-1}{c} \right) \left(\dfrac{a-1}{a} \right) \left(\dfrac{b-1}{b} \right)}\\ =\dfrac{x}{abc\left(\dfrac{(c-1)(a-1)(b-1)}{abc} \right)}\\ =\dfrac{x}{(a-1)(b-1)(c-1)}

We equate the LHS and RHS again:

1 a ( b 1 ) ( c 1 ) + 1 b ( a 1 ) ( c 1 ) + 1 c ( a 1 ) ( b 1 ) = x ( a 1 ) ( b 1 ) ( c 1 ) ( a 1 ) ( b 1 ) ( c 1 ) ( 1 a ( b 1 ) ( c 1 ) + 1 b ( a 1 ) ( c 1 ) + 1 c ( a 1 ) ( b 1 ) ) = x x = ( a 1 ) ( b 1 ) ( c 1 ) a ( b 1 ) ( c 1 ) + ( a 1 ) ( b 1 ) ( c 1 ) b ( a 1 ) ( c 1 ) + ( a 1 ) ( b 1 ) ( c 1 ) c ( a 1 ) ( b 1 ) = a 1 a + b 1 b + c 1 c = 1 1 a + 1 1 b + 1 1 c = 3 ( 1 a + 1 b + 1 c ) = 3 1 x = 2 \dfrac{1}{a(b-1)(c-1)} + \dfrac{1}{b(a-1)(c-1)} + \dfrac{1}{c(a-1)(b-1)} = \dfrac{x}{(a-1)(b-1)(c-1)}\\ (a-1)(b-1)(c-1)\left(\dfrac{1}{a(b-1)(c-1)} + \dfrac{1}{b(a-1)(c-1)} + \dfrac{1}{c(a-1)(b-1)}\right) = x\\ x=\dfrac{(a-1)(b-1)(c-1)}{a(b-1)(c-1)} + \dfrac{(a-1)(b-1)(c-1)}{b(a-1)(c-1)} + \dfrac{(a-1)(b-1)(c-1)}{c(a-1)(b-1)}\\ =\dfrac{a-1}{a} + \dfrac{b-1}{b} + \dfrac{c-1}{c}\\ =1-\dfrac{1}{a} + 1 - \dfrac{1}{b} + 1 - \dfrac{1}{c}\\ =3 - \left(\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}\right)\\ =3-1\\ x=\boxed{2}

Wonderful. I think the question is harder than level 2 algebra

حافظ القران الكريم - 5 years, 1 month ago

Log in to reply

I think so too. It took me more than half an hour to factorize it completely

Hung Woei Neoh - 5 years, 1 month ago

Hint* ,, Let a=b=c

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...