Remember your inverse formulae!

Geometry Level 3

Find lim n r = 1 n arctan ( 1 2 r 2 ) \displaystyle \lim _{ n \to \infty} \sum _{ r=1 }^{ n }{ \arctan { \left( \frac { 1 }{ 2{ r }^{ 2 } } \right) } } in degrees.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 26, 2019

Let θ n = r = 1 n arctan ( 1 2 r 2 ) \theta_n = \displaystyle \sum_{r=1}^n \arctan \left(\frac 1{2r^2} \right) . Then we have:

θ 1 = arctan ( 1 2 ) θ 2 = arctan ( 1 2 ) + arctan ( 1 8 ) = arctan ( 1 2 + 1 8 1 1 2 1 8 ) = arctan ( 2 3 ) θ 3 = arctan ( 2 3 ) + arctan ( 1 18 ) = arctan ( 2 3 + 1 18 1 2 3 1 18 ) = arctan ( 3 4 ) \begin{aligned} \theta_1 & = \arctan \left(\frac 12\right) \\ \theta_2 & = \arctan \left(\frac 12\right) + \arctan \left(\frac 18\right) = \arctan \left(\frac {\frac 12 + \frac 18}{1-\frac 12 \cdot \frac 18} \right) = \arctan \left(\frac 23 \right) \\ \theta_3 & = \arctan \left(\frac 23 \right) + \arctan \left(\frac 1{18} \right) = \arctan \left(\frac {\frac 23 + \frac 1{18}}{1-\frac 23 \cdot \frac 1{18}} \right) = \arctan \left(\frac 34 \right) \end{aligned}

It appears that θ n = arctan ( n n + 1 ) \theta_n = \arctan \left(\dfrac n{n+1} \right) and we can prove it by induction that the claim is true for all n 1 n \ge 1 . We know that the claim is true for n = 1 n=1 . Assume that it is true for n n , then:

θ n + 1 = θ n + arctan ( 1 2 ( n + 1 ) 2 ) = arctan ( n n + 1 ) + arctan ( 1 2 ( n + 1 ) 2 ) = arctan ( n n + 1 + 1 2 ( n + 1 ) 2 1 n n + 1 1 2 ( n + 1 ) 2 ) = arctan ( ( n + 1 ) ( 2 n 2 + 2 n + 1 ) 2 ( n + 1 ) 3 n ) = arctan ( ( n + 1 ) ( 2 n 2 + 2 n + 1 ) 2 ( n 3 + 3 n 2 + 3 n + 1 ) n ) = arctan ( ( n + 1 ) ( 2 n 2 + 2 n + 1 ) 2 n 3 + 6 n 2 + 5 n + 2 ) = arctan ( ( n + 1 ) ( 2 n 2 + 2 n + 1 ) ( n + 2 ) ( 2 n 2 + 2 n + 1 ) ) = arctan ( n + 1 n + 2 ) \begin{aligned} \theta_{n+1} & = \theta_n + \arctan \left(\frac 1{2(n+1)^2} \right) \\ & = \arctan \left(\frac n{n+1} \right) + \arctan \left(\frac 1{2(n+1)^2} \right) \\ & = \arctan \left(\frac {\frac n{n+1} + \frac 1{2(n+1)^2}} {1- \frac n{n+1} \cdot \frac 1{2(n+1)^2}} \right) \\ & = \arctan \left(\frac {(n+1)(2n^2+2n+1)}{2(n+1)^3 - n} \right) \\ & = \arctan \left(\frac {(n+1)(2n^2+2n+1)}{2(n^3+3n^2+3n+1) - n} \right) \\ & = \arctan \left(\frac {(n+1)(2n^2+2n+1)}{2n^3+6n^2+5n+2} \right) \\ & = \arctan \left(\frac {(n+1)(2n^2+2n+1)}{(n+2)(2n^2+2n+1)} \right) \\ & = \arctan \left(\frac {n+1}{n+2} \right) \end{aligned}

Therefore, the claim is also true for n + 1 n+1 and hence true for all n 1 n \ge 1 .

Then we have lim n r = 1 n arctan ( 1 2 r 2 ) = lim n arctan ( n n + 1 ) = arctan ( 1 ) = π 4 = 45 \displaystyle \lim_{n \to \infty} \sum_{r=1}^n \arctan \left(\frac 1{2r^2} \right) = \lim_{n \to \infty} \arctan \left(\frac n{n+1} \right) = \arctan (1) = \frac \pi 4 = \boxed{45}^\circ .

Vishnu Kadiri
Feb 26, 2019

lim n r = 1 n arctan ( 1 2 r 2 ) = lim n r = 1 n arctan ( 2 4 r 2 ) = lim n r = 1 n arctan ( ( 2 r + 1 ) ( 2 r 1 ) 1 + ( 2 r + 1 ) ( 2 r 1 ) ) = lim n r = 1 n arctan ( 2 r + 1 ) arctan ( 2 r 1 ) = lim n arctan ( 2 n + 1 ) arctan 1 = 90 45 = 45 \lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \arctan { \left( \frac { 1 }{ 2{ r }^{ 2 } } \right) } } } =\lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \arctan { \left( \frac { 2 }{ 4{ r }^{ 2 } } \right) } } } =\lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \arctan { \left( \frac { (2r+1)-(2r-1) }{ 1+(2r+1)(2r-1) } \right) } } } =\lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \arctan { (2r+1) } -\arctan { (2r-1) } } } =\lim _{ n\rightarrow \infty }{ \arctan { (2n+1) } -\arctan { 1 } } =90-45=45

Kyle T
Feb 26, 2019

this link tells us that it sums to pi/4
this link tells us that pi/4 equals 45 degrees

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...