Remembering Ramanujan

Calculus Level 5

G = 1 n = 1 1 172 9 n n ( n + 1 ) \mathfrak{G}=1-\displaystyle \sum^{\infty}_{n=1} \dfrac{1}{1729^n n(n+1)}

If the value of G \mathfrak{G} is in the form ln ( 1 + 1 n ) n \ln \left(1+\frac{1}{n}\right)^n , find n n .


The answer is 1728.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Feb 25, 2017

= 1 n = 0 ( 1 1729 ) n ( 1 n 1 n + 1 ) \large \displaystyle = 1 - \sum_{n=0}^{\infty} \Big (\frac{1}{1729} \Big )^n \cdot \Big (\frac1n - \frac{1}{n+1}\Big )

= 1 ( 1 1729 ) + 1 2 [ ( 1 1729 ) ( 1 1729 ) 2 ] + 1 3 [ ( 1 1729 ) 2 ( 1 1729 ) 3 ] + . . . \large \displaystyle = 1 - \Big (\frac{1}{1729} \Big ) + \frac12 \cdot \Big[\Big (\frac{1}{1729} \Big ) - \Big (\frac{1}{1729} \Big )^2 \Big] + \frac13 \cdot \Big[\Big (\frac{1}{1729} \Big )^2 - \Big (\frac{1}{1729} \Big )^3 \Big] + ...

= ( 1 1 1729 ) ( 1 + 1 / 1729 2 + ( 1 / 1729 ) 2 3 + . . . ) \large \displaystyle = \Big( 1 - \frac{1}{1729} \Big )\cdot \Big (1 + \frac{1/1729}{2} + \frac{(1/1729)^2}{3} +... \Big )

= ( 1728 ) ( 1 / 1729 + ( 1 / 1729 ) 2 2 + ( 1 / 1729 ) 3 3 + . . . ) \large \displaystyle = ( 1728)\cdot \Big (1/1729 + \frac{(1/1729)^2}{2} + \frac{(1/1729)^3}{3} +... \Big )

= ( 1728 ) ln ( 1 1 1729 ) \large \displaystyle = ( 1728)\cdot - \ln \Big (1 - \frac{1}{1729}\Big)

= ( 1728 ) ln [ ( 1728 1729 ) 1 ] \large \displaystyle = ( 1728)\cdot \ln \Big [ \Big (\frac{1728}{1729} \Big) ^ {-1} \Big]

= ( 1728 ) ln ( 1729 1728 ) \large \displaystyle = ( 1728)\cdot \ln \Big (\frac{1729}{1728} \Big)

= ( 1728 ) ln ( 1 + 1 1728 ) \large \displaystyle = ( 1728)\cdot \ln \Big (1 + \frac{1}{1728} \Big)

= ln [ ( 1 + 1 1728 ) 1728 ] \large \displaystyle = \ln \Big [ \Big (1 + \frac{1}{1728} \Big)^{1728} \Big]

So, n = 1728 \large \displaystyle \color{#3D99F6} \boxed{n = 1728}

Cleverly executed by noticing the series expansion of ln ( 1 x ) \ln(1-x) .

P.S. Remember to put a backslash before the natural log operator (\ln), that would make it look like an operator.

Tapas Mazumdar - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...