Remembering Ramanujan

Calculus Level 5

n = 1 n k = 1 n 1 1 + 1729 k \displaystyle \sum_{n=1}^{\infty} n \prod_{k=1}^{n} \dfrac{1}{1+1729k}

If above expression can be expressed in the form 1 A \dfrac{1}{A} , find A A .


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 21, 2016

If we write α = 1 1729 \alpha = \tfrac{1}{1729} then 1 k = 1 n ( 1 + 1729 k ) = α n k = 1 n ( α + k ) = α n Γ ( α + 1 ) Γ ( α + n + 1 ) \frac{1}{\displaystyle \prod_{k=1}^n(1 + 1729k)} \; = \; \frac{\alpha^n}{\displaystyle \prod_{k=1}^n (\alpha + k)} \; = \; \frac{\alpha^n \Gamma(\alpha+1)}{\Gamma(\alpha+n+1)} and hence the sum is S = n = 1 n α n Γ ( α + 1 ) Γ ( α + n + 1 ) = n = 1 α n Γ ( α + 1 ) Γ ( n + 1 ) Γ ( α + n + 1 ) ( n 1 ) ! = n = 1 α n + 1 Γ ( α ) Γ ( n + 1 ) Γ ( α + n + 1 ) ( n 1 ) ! = n = 1 α n + 1 B ( α , n + 1 ) ( n 1 ) ! = n = 0 α n + 2 B ( α , n + 2 ) n ! = n = 0 α n + 2 n ! 0 1 ( 1 x ) α 1 x n + 1 d x = α 2 0 1 x e α x ( 1 x ) α 1 d x = [ α e α x ( 1 x ) α ] 0 1 = α = 1 1729 \begin{array}{rcl} S & = & \displaystyle \sum_{n=1}^\infty \frac{n \alpha^n \Gamma(\alpha+1)}{\Gamma(\alpha+n+1)} \; = \; \sum_{n=1}^\infty \frac{\alpha^n \Gamma(\alpha+1) \Gamma(n+1)}{\Gamma(\alpha+n+1) (n-1)!} \; = \; \sum_{n=1}^\infty \frac{\alpha^{n+1} \Gamma(\alpha) \Gamma(n+1)}{\Gamma(\alpha+n+1) (n-1)!}\\ & = & \displaystyle \sum_{n=1}^\infty \frac{\alpha^{n+1} B(\alpha,n+1)}{(n-1)!} \; = \; \sum_{n=0}^\infty \frac{\alpha^{n+2}B(\alpha,n+2)}{n!} \\ & = & \displaystyle \sum_{n=0}^\infty \frac{\alpha^{n+2}}{n!} \int_0^1 (1-x)^{\alpha-1} x^{n+1}\,dx \; = \; \alpha^2 \int_0^1 x e^{\alpha x}(1-x)^{\alpha-1}\,dx \\ & = & \displaystyle \Big[-\alpha e^{\alpha x}(1-x)^\alpha \Big]_0^1 \; = \; \alpha \; = \; \tfrac{1}{1729} \end{array} making the answer 1729 \boxed{1729} .

Shivam Mishra
Feb 27, 2016

@rohit udaiwal Can you post a solution?

See this .

Rohit Udaiwal - 5 years, 3 months ago

Log in to reply

Thanks!!!! @rohit udaiwal

shivam mishra - 5 years, 3 months ago

Log in to reply

No problem my friend :)

Rohit Udaiwal - 5 years, 3 months ago

I see you could solve it,what was your method?

Rohit Udaiwal - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...