Find the sum of all possible values of θ (in degrees) restricted to the domain 0 ≤ θ ≤ 3 6 0 ∘ , satisfying
sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 4 3 ,
This problem is posed by Ren Y.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Calvin Lin Do you know how to edit in LaTex such that all the "=" symbol are in the same position? I think this solution is quite messy, trying to edit it...
Log in to reply
You can use the align environment in Latex. For example,
\begin{align} 1 & 2 \\ 3 & 4 \\ \end{align}
produces
1 3 2 4
\ denotes the end of a line and & denotes the alignment (i.e tabbing)
But cos 2 θ + s i n 2 θ = 1 so this makes cos 4 θ + s i n 4 θ = − 1 / 4 but this is not possible. Where am i going wrong?
First we will convert the expression to make it a complete square. Hence sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ − sin 2 θ cos 2 θ = 4 3 ( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ = 4 3
But we already know that sin 2 θ + cos 2 θ = 1
Hence the expression becomes > 1 − sin 2 θ cos 2 θ = 4 3 Now we need to use the multiple angle formula that is 2 sin θ cos θ = sin 2 θ So, 4 sin 2 θ cos 2 θ = sin 2 2 θ ⇒ sin 2 θ cos 2 θ = 4 sin 2 2 θ Hence the expression becomes > 1 − 4 sin 2 2 θ = 4 3 This gives > sin 2 θ = ± 1
Since 0 ∘ ≤ θ ≤ 3 6 0 ∘ ⇒ 0 ∘ ≤ 2 θ ≤ 7 2 0 ∘ , we can state that >
2 θ = 9 0 ∘ , 2 7 0 ∘ , 4 5 0 ∘ , 6 3 0 ∘ θ = 4 5 ∘ , 1 3 5 ∘ , 2 2 5 ∘ , 3 1 5 ∘
SO sum of all possible values of θ = 4 5 + 1 3 5 + 2 2 5 + 3 1 5 = 7 2 0
Obviously sin 4 θ + sin 2 θ cos 2 θ + cos θ 4 = 1 − 4 1 sin 2 ( 2 θ ) . The equation sin ( 2 θ ) = 1 has solutions 4 5 , 1 3 5 , 2 2 5 , 3 1 5 (in degrees), hence the result is 7 2 0 .
Adding sin 2 θ cos 2 θ to the equation we get 1 = 4 3 + sin 2 θ cos 2 θ which means sin 2 θ = 1 or sin 2 θ = − 1 . Easily we get θ = 4 5 o , 1 3 5 o , 2 2 5 o , 3 1 5 o . So the sum of all possible value of θ is 4 5 o + 1 3 5 o + 2 2 5 o + 3 1 5 o = 7 2 0 o .
sin 4 θ + sin 2 cos 2 + cos 4 θ = ( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ
= 1 − 4 sin 2 2 θ = 4 3
sin 2 2 θ = 1
2 1 − cos 4 θ = 1
cos 4 θ = − 1
so θ = 4 1 ( 2 n π − π ) or 4 1 ( 2 n π + π )
so θ = 4 π , 4 3 π , 4 5 π , 4 7 π
Answer is 4 π + 4 3 π + 4 5 π + 4 7 π = 4π = 720
sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = ( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ = 1 − sin 2 θ cos 2 θ = 3 / 4 sin 2 θ cos 2 θ = 1 / 4 sin θ cos θ = 1 / 2 , − 1 / 2 sin ( 2 θ ) = 1 , − 1 2 θ = 9 0 , 2 7 0 , 4 5 0 , 6 3 0 θ = 4 5 , 1 3 5 , 2 2 5 , 3 1 5 4 5 + 1 3 5 + 2 2 5 + 3 1 5 = 7 2 0
simplify the expression to sin(theta)*cos(theta)=+-1/2 using sin^2 (theta)+cos^2 (theta)=1
(Sin^2 x+ cos^2 x)^2 - sin^2 x cos^2 x=3/4 =>1- sin^2 x cos^2 x=3/4 1-1/4(2sin x cos x)^2=3/4 1-1/4[sin^2(2x)]=3/4 4- sin^2(2x)=3 sin^2(2x)=1 sin2x=+_1 2x=90 or 270 or 450 and 630 or x=45 or 135 or 225 or 315. => x = 45+135+225+315=720
The given equation can be rewritten as ( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ = 4 3 ⇒ 1 − sin 2 θ cos 2 θ = 4 3 ⇒ sin 2 θ cos 2 θ = 4 1 ⇒ sin θ cos θ = 2 1 o r 2 − 1 ⇒ 2 sin θ cos θ = 1 o r − 1 ⇒ sin 2 θ = 1 ⇒ θ = 4 5 o r 2 2 5 ⇒ sin 2 θ = − 1 ⇒ θ = 1 3 5 o r 3 1 5 ⇒ s u m o f a l l v a l u e s o f θ = 7 2 0
The equation can be written as:
sin θ ^4+2( sin θ cos θ )^2+ cos θ ^4-( sin θ cos θ )^2= 4 3
(sin^theta+cos^2theta)^2-( sin θ cos θ )^2= 4 3
1-( sin θ cos θ )^2= 4 3
( sin θ cos θ )^2= 4 1
sin θ cos θ =+- 2 1
sin \2 t h e t a \=+-1
The graph of sin2theta will give solutions 45, 135,225,315
The following expression can be written as ( s i n 2 θ + c o s 2 θ ) 2 = 4 3 + sin 2 θ + c o s 2 θ
= 1 2 = 4 3 + sin 2 θ + cos 2 θ
implies \(\frac{1}{4} = \sin^2\theta + \cos^2\theta)\
On multiplying both sides by 4, 1 =\( 4\sin^2\theta +\cos^2\theta=sin^2 2\theta\)
implies sin 2 θ = + 1 o r − 1 hence there are 4 values of theta within the limits that satisfy the following θ = 4 5 , 1 3 5 , 2 2 5 , 3 1 5
therefore answer = 4 5 + 1 3 5 + 2 2 5 + 3 1 5 = 7 2 0
sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 4 3
Rewrite as
( sin 2 θ + cos 2 θ ) 2 − sin 2 θ cos 2 θ = 4 3
Use identity: sin 2 θ + cos 2 θ = 1
− sin 2 θ cos 2 θ = − 4 1
4 sin 2 θ cos 2 θ = 1
( 2 sin θ cos θ ) 2 = 1
( 2 sin θ cos θ ) 2 = + / − 1
2 sin θ cos θ = + / − 1
sin ( 2 θ ) = + / − 1
θ = 4 5 , 1 3 5 , 2 2 5 , 3 1 5
4 5 + 1 3 5 + 2 2 5 + 3 1 5 = 7 2 0
We can write this way : 3/4 = 1 - [sin(θ).cos(θ)]^2. So sin(θ).cos(θ) = +-1/2. Using the fundamental law of the trigonometry we will have a equation ( 4[cos(θ)]^4 - 4[cos(θ)]^2 +1=0). Lastly we will have like solution : S = {45,135,225,315}, <graus>. The sum is 720.
sin^4 θ+2sin^2 θcos^2 θ+cos^4 θ=3/4+sin^2 θcos^2 θ
(sin^2 θ+cos^2 θ)^2=3/4+sin^2 θcos^2 θ
1=3/4+sin^2 θcos^2 θ
1/4=sin^2 θcos^2 θ
1/4=1/4(sin2θ)^2
(sin2θ)=+-1
(sin2θ)=1 then θ=45,225
sin 2θ=-1 then θ=135,315
so the sum of all θ are 45+225+135+315=720
Let x = sin θ and y = cos θ . We rewrite the given expression as: $$(x^2+y^2)^2=\frac{3}{4}+x^2y^2$$ Since x = sin θ and y = cos θ , the expression on the left is equivalent to 1 .
We now have:
$$1=\frac{3}{4}+x^2y^2$$ $$\frac{1}{4}=x^2y^2$$ $$\frac{1}{2}=xy$$ In order for this to be true, x and y must have values of 2 2 and − 2 2 , in some permutation.
The values of θ corresponding to all possible values of x and y that are solutions are thus: 4 5 ∘ , 1 3 5 ∘ , 2 2 5 ∘ , and 3 1 5 ∘ .
The sum of these values is: $$S=45+135+225+315$$ $$S=\boxed{720}$$
Using that sin 2 θ = 1 − cos 2 θ we get an equation with just cosine: cos 4 θ − cos 2 θ + 4 1 = 0 which gives cos 2 θ = 2 1 and cos θ = ± 2 1 = ± 2 2 . We know from the unit circle that cos θ = 2 2 has the solution θ = 4 5 ∘ in the first quadrant, so by symmetry of the unit circle we obtain θ ∈ { 4 5 ∘ , 1 3 5 ∘ , 2 2 5 ∘ , 3 1 5 ∘ } . The sum of these angles is 720 and is thus the answer to the problem.
Good first observation that the LHS is very similar to ( sin 2 θ + cos 2 θ ) 2 .
Sin^4(theta) + 2.sin^2(theta).cos^2(theta) + cos^4(theta) - sin^2(theta).cos^2(theta) = 1 - sin^2(theta).cos^2(theta) =3/4 <=> 4sin^2(theta).cos^2(theta) = 1 <=> sin(2theta) = +-1 <=> theta = 45, 135, 225, 315. So we get the sum equal 45+135+225+315 = 720
s i n 2 θ + c o s 2 θ = 1
So ( s i n 2 θ + c o s 2 θ ) 2 = s i n 4 θ + 2 s i n 2 θ c o s 2 θ + c o s 4 θ = 1
Subtracting the original equation we get s i n 2 θ c o s 2 θ = 4 1
So s i n θ c o s θ = 2 1
c o s θ = 1 − s i n 2 θ
s i n 2 θ ( 1 − s i n 2 θ ) = 4 1
s i n 4 θ − s i n 2 θ + 4 1 = 0
( s i n 2 θ + 2 1 ) ( s i n 2 θ − 2 1 ) = 0
So s i n θ = ± 2 1
Therefore θ = 4 5 ∘ , 1 3 5 ∘ , 2 2 5 ∘ , 3 1 5 ∘
4 5 + 1 3 5 + 2 2 5 + 3 1 5 = 7 2 0
Good first observation that the LHS is very similar to ( sin 2 θ + cos 2 θ ) 2 .
That this reply is to this version of the solution is somewhat arbitrary. I just notice I should've submitted mine. Actually calculating the angles is an unnecessary step in solving the question, thanks to the amount of symmetry. As soon as you know there's four solutions, you know the angles have to sum up to 720.
Problem Loading...
Note Loading...
Set Loading...
The equation can be arranged as:
sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 4 3
sin 2 θ ( sin 2 θ + cos 2 θ ) + cos 4 θ = 4 3
Since sin 2 θ + cos 2 θ = 1 ,
sin 2 θ + cos 4 θ = 4 3
1 − cos 2 θ + cos 4 θ = 4 3
cos 2 θ − cos 4 θ = 4 1
cos 2 θ ( 1 − cos 2 θ ) = 4 1
cos 2 θ sin 2 θ = 4 1
cos θ sin θ = ± 2 1
2 cos θ sin θ = ± 1
sin 2 θ = ± 1
When sin 2 θ = 1 ,
2 θ = 9 0 ∘ , 4 5 0 ∘ …
θ = 4 5 ∘ , 2 2 5 ∘ Note that: 0 ∘ ≤ θ ≤ 3 6 0 ∘
When sin 2 θ = − 1 ,
2 θ = 2 7 0 ∘ , 6 3 0 ∘ …
θ = 1 3 5 ∘ , 3 1 5 ∘ Note that: 0 ∘ ≤ θ ≤ 3 6 0 ∘
∴ θ = 4 5 ∘ , 1 3 5 ∘ , 2 2 5 ∘ , 3 1 5 ∘
The sum of all possible values of θ = 4 5 ∘ + 1 3 5 ∘ + 2 2 5 ∘ + 3 1 5 ∘ = 7 2 0