Ren's trigonometric equation

Algebra Level 4

Find the sum of all possible values of θ \theta (in degrees) restricted to the domain 0 θ 36 0 0 \leq \theta \leq 360^\circ , satisfying

sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 3 4 , \sin^4 \theta + \sin^2 \theta \; \cos^2\theta +\cos ^4 \theta = \frac {3}{4},

This problem is posed by Ren Y.


The answer is 720.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

19 solutions

Christopher Boo
Jul 25, 2013

The equation can be arranged as:

sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 3 4 \sin^4\theta+\sin^2\theta\cos^2\theta+\cos^4\theta=\frac{3}{4}

sin 2 θ ( sin 2 θ + cos 2 θ ) + cos 4 θ = 3 4 \sin^2\theta(\sin^2\theta+\cos^2\theta)+\cos^4\theta=\frac{3}{4}

Since sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 ,

sin 2 θ + cos 4 θ = 3 4 \sin^2\theta+\cos^4\theta=\frac{3}{4}

1 cos 2 θ + cos 4 θ = 3 4 1-\cos^2\theta+\cos^4\theta=\frac{3}{4}

cos 2 θ cos 4 θ = 1 4 \cos^2\theta-\cos^4\theta=\frac{1}{4}

cos 2 θ ( 1 cos 2 θ ) = 1 4 \cos^2\theta(1-\cos^2\theta)=\frac{1}{4}

cos 2 θ sin 2 θ = 1 4 \cos^2\theta\sin^2\theta=\frac{1}{4}

cos θ sin θ = ± 1 2 \cos\theta\sin\theta=\pm\frac{1}{2}

2 cos θ sin θ = ± 1 2\cos\theta\sin\theta=\pm1

sin 2 θ = ± 1 \sin2\theta=\pm1

When sin 2 θ = 1 \sin2\theta=1 ,

2 θ = 9 0 , 45 0 2\theta={90^\circ,450^\circ\ldots}

θ = 4 5 , 22 5 \theta={45^\circ,225^\circ} Note that: 0 θ 36 0 0^\circ\leq\theta\leq360^\circ

When sin 2 θ = 1 \sin2\theta=-1 ,

2 θ = 27 0 , 63 0 2\theta={270^\circ,630^\circ\ldots}

θ = 13 5 , 31 5 \theta={135^\circ,315^\circ} Note that: 0 θ 36 0 0^\circ\leq\theta\leq360^\circ

θ = 4 5 , 13 5 , 22 5 , 31 5 \therefore\theta={45^\circ,135^\circ,225^\circ,315^\circ}

The sum of all possible values of θ = 4 5 + 13 5 + 22 5 + 31 5 = 720 \theta=45^\circ+135^\circ+225^\circ+315^\circ=720

@Calvin Lin Do you know how to edit in LaTex such that all the "=" symbol are in the same position? I think this solution is quite messy, trying to edit it...

Christopher Boo - 7 years ago

Log in to reply

You can use the align environment in Latex. For example,

  \begin{align} 1 & 2 \\ 3 & 4 \\ \end{align}

produces

1 2 3 4 \begin{aligned} 1 & 2 \\ 3 & 4 \\ \end{aligned}

\ denotes the end of a line and & denotes the alignment (i.e tabbing)

Calvin Lin Staff - 7 years ago

But cos 2 θ + s i n 2 θ = 1 \cos^{2}\theta + sin^{2}\theta = 1 so this makes cos 4 θ + s i n 4 θ = 1 / 4 \cos^{4}\theta + sin^{4}\theta = -1/4 but this is not possible. Where am i going wrong?

neelesh vij - 5 years, 6 months ago
Kishlaya Jaiswal
Jul 27, 2013

First we will convert the expression to make it a complete square. Hence sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ sin 2 θ cos 2 θ = 3 4 \sin^4 \theta + \cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta - \sin^2 \theta \cos^2 \theta = \frac{3}{4} ( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ = 3 4 (\sin^2 \theta + \cos^2 \theta)^2 - \sin^2 \theta \cos^2 \theta = \frac{3}{4}

But we already know that sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1

Hence the expression becomes > 1 sin 2 θ cos 2 θ = 3 4 1 - \sin^2 \theta \cos^2 \theta = \frac{3}{4} Now we need to use the multiple angle formula that is 2 sin θ cos θ = sin 2 θ 2\sin\theta\cos\theta = \sin 2\theta So, 4 sin 2 θ cos 2 θ = sin 2 2 θ sin 2 θ cos 2 θ = sin 2 2 θ 4 4\sin^2\theta \cos^2\theta = \sin^2 2\theta \Rightarrow \sin^2\theta \cos^2\theta = \frac{\sin^2 2\theta}{4} Hence the expression becomes > 1 sin 2 2 θ 4 = 3 4 1 - \frac{\sin^2 2\theta}{4} = \frac{3}{4} This gives > sin 2 θ = ± 1 \sin 2\theta = \pm 1

Since 0 θ 36 0 0 2 θ 72 0 0^\circ \leq \theta \leq 360^\circ \Rightarrow 0^\circ \leq 2\theta \leq 720^\circ , we can state that >

2 θ = 9 0 , 27 0 , 45 0 , 63 0 2\theta = 90^\circ, 270^\circ, 450^\circ, 630^\circ θ = 4 5 , 13 5 , 22 5 , 31 5 \theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ

SO sum of all possible values of θ = 45 + 135 + 225 + 315 = 720 \theta = 45 + 135 +225 +315 = 720

Rémy Vuillet
Jul 28, 2013

Obviously sin 4 θ + sin 2 θ cos 2 θ + cos θ 4 = 1 1 4 sin 2 ( 2 θ ) \sin^4\theta+\sin^2\theta\cos^2\theta+\cos\theta^4=1-\frac{1}{4}\sin^2(2\theta) . The equation sin ( 2 θ ) = 1 \sin(2\theta)=1 has solutions 45 , 135 , 225 , 315 45, 135, 225, 315 (in degrees), hence the result is 720 720 .

Avika Septriani
Jul 24, 2013

Adding sin 2 θ cos 2 θ \sin^2\theta \cos^2\theta to the equation we get 1 = 3 4 + sin 2 θ cos 2 θ 1=\dfrac{3}{4}+ \sin^2\theta \cos^2\theta which means sin 2 θ = 1 \sin2\theta = 1 or sin 2 θ = 1 \sin2\theta = -1 . Easily we get θ = 4 5 o , 13 5 o , 22 5 o , 31 5 o \theta=45^o,135^o,225^o,315^o . So the sum of all possible value of θ \theta is 4 5 o + 13 5 o + 22 5 o + 31 5 o = 72 0 o 45^o+135^o+225^o+315^o=720^o .

Mayank Kaushik
Jul 22, 2013

sin 4 θ + sin 2 cos 2 + cos 4 θ \sin^{4}θ + \sin^{2}\cos^{2} +\cos^{4}θ = ( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ = (\sin^{2}θ + \cos^{2}θ)^{2} - \sin^{2}θ\cos^{2}θ

= 1 sin 2 2 θ 4 = 1 - \frac{\sin^{2}2θ}{4} = 3 4 = \frac{3}{4}

sin 2 2 θ = 1 \sin^{2}2θ = 1

1 cos 4 θ 2 = 1 \frac{1 - \cos4θ}{2} = 1

cos 4 θ = 1 \cos4θ = -1

so θ = 1 4 ( 2 n π π ) θ = \frac{1}{4} (2nπ - π) or 1 4 ( 2 n π + π ) \frac{1}{4} (2nπ + π)

so θ = π 4 , 3 π 4 , 5 π 4 , 7 π 4 θ = \frac{π}{4} ,\frac{3π}{4} , \frac{5π}{4} , \frac{7π}{4}

Answer is π 4 + 3 π 4 + 5 π 4 + 7 π 4 \frac{π}{4} + \frac{3π}{4} + \frac{5π}{4} + \frac{7π}{4} = 4π = 720

Maedhros 777
Jul 21, 2013

sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = ( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ = 1 sin 2 θ cos 2 θ = 3 / 4 \sin^{4}\theta + \sin^{2}\theta \cos^{2}\theta + \cos^{4}\theta = (\sin^{2}\theta + \cos^{2}\theta)^{2} - \sin^{2}\theta \cos^{2}\theta = 1 - \sin^{2}\theta \cos^{2}\theta = 3/4 sin 2 θ cos 2 θ = 1 / 4 \sin^{2}\theta \cos^{2}\theta = 1/4 sin θ cos θ = 1 / 2 , 1 / 2 \sin\theta \cos\theta = 1/2, -1/2 sin ( 2 θ ) = 1 , 1 \sin(2\theta) = 1, -1 2 θ = 90 , 270 , 450 , 630 2\theta = 90, 270, 450, 630 θ = 45 , 135 , 225 , 315 \theta = 45, 135, 225, 315 45 + 135 + 225 + 315 = 720 45 + 135 + 225 + 315 = 720

Snehdeep Arora
Jul 28, 2013

simplify the expression to sin(theta)*cos(theta)=+-1/2 using sin^2 (theta)+cos^2 (theta)=1

Tran Trung Nguyen
Jul 27, 2013

(Sin^2 x+ cos^2 x)^2 - sin^2 x cos^2 x=3/4 =>1- sin^2 x cos^2 x=3/4 1-1/4(2sin x cos x)^2=3/4 1-1/4[sin^2(2x)]=3/4 4- sin^2(2x)=3 sin^2(2x)=1 sin2x=+_1 2x=90 or 270 or 450 and 630 or x=45 or 135 or 225 or 315. => x = 45+135+225+315=720

Aman Tiwari
Jul 27, 2013

The given equation can be rewritten as ( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ = 3 4 1 sin 2 θ cos 2 θ = 3 4 sin 2 θ cos 2 θ = 1 4 sin θ cos θ = 1 2 o r 1 2 2 sin θ cos θ = 1 o r 1 sin 2 θ = 1 θ = 45 o r 225 sin 2 θ = 1 θ = 135 o r 315 s u m o f a l l v a l u e s o f θ = 720 (\sin^{2}\theta+ \cos^{2}\theta)^{2} -\sin^{2}\theta\cos^{2}\theta=\frac{3}{4} \Rightarrow1-\sin^{2}\theta\cos^{2}\theta=\frac{3}{4} \Rightarrow\sin^{2}\theta\cos^{2}\theta=\frac{1}{4} \Rightarrow\sin\theta\cos\theta=\frac{1}{2} or \frac{-1}{2} \Rightarrow2\sin\theta\cos\theta=1 or -1 \Rightarrow\sin{2}\theta=1 \Rightarrow\theta=45 or 225 \Rightarrow\sin{2}\theta=-1 \Rightarrow\theta=135 or 315 \Rightarrow sum of all values of \theta=720

Daniel Hirschberg
Jul 25, 2013

Staff test solution.

Mani Jha
Jul 24, 2013

The equation can be written as:

sin θ \sin \theta ^4+2( sin θ \sin \theta cos θ \cos \theta )^2+ cos θ \cos \theta ^4-( sin θ \sin \theta cos θ \cos \theta )^2= 3 4 \frac{3}{4}

(sin^theta+cos^2theta)^2-( sin θ \sin \theta cos θ \cos \theta )^2= 3 4 \frac{3}{4}

1-( sin θ \sin \theta cos θ \cos \theta )^2= 3 4 \frac{3}{4}

( sin θ \sin \theta cos θ \cos \theta )^2= 1 4 \frac{1}{4}

sin θ \sin \theta cos θ \cos \theta =+- 1 2 \frac{1}{2}

sin \2 t h e t a \sin \2theta \=+-1

The graph of sin2theta will give solutions 45, 135,225,315

Athul Nambolan
Jul 24, 2013

The following expression can be written as ( s i n 2 θ + c o s 2 θ ) 2 (sin ^2\theta + cos^2\theta )^2 = 3 4 \frac{3}{4} + sin 2 θ + c o s 2 θ + \sin^2\theta + cos^2 \theta

= 1 2 = 3 4 + sin 2 θ + cos 2 θ 1^2 = \frac {3}{4} + \sin^2 \theta + \cos^2 \theta

implies \(\frac{1}{4} = \sin^2\theta + \cos^2\theta)\

On multiplying both sides by 4, 1 =\( 4\sin^2\theta +\cos^2\theta=sin^2 2\theta\)

implies sin 2 θ \sin 2\theta = + 1 o r 1 +1 or -1 hence there are 4 values of theta within the limits that satisfy the following θ = 45 , 135 , 225 , 315 \theta = 45, 135 , 225, 315

therefore answer = 45 + 135 + 225 + 315 = 720 45 + 135+225+315= 720

Lily Ye
Jul 23, 2013

sin 4 θ + sin 2 θ cos 2 θ + cos 4 θ = 3 4 \sin ^{4} \theta + \sin ^{2} \theta \cos ^{2} \theta + \cos ^{4} \theta = \frac{3}{4}

Rewrite as

( sin 2 θ + cos 2 θ ) 2 sin 2 θ cos 2 θ = 3 4 (\sin ^{2} \theta + \cos ^{2} \theta) ^{2} - \sin ^{2} \theta \cos ^{2} \theta = \frac{3}{4}

Use identity: sin 2 θ + cos 2 θ = 1 \sin ^{2} \theta + \cos ^{2} \theta = 1

sin 2 θ cos 2 θ = 1 4 - \sin ^{2} \theta \cos ^{2} \theta = - \frac{1}{4}

4 sin 2 θ cos 2 θ = 1 4 \sin ^{2} \theta \cos ^{2} \theta = 1

( 2 sin θ cos θ ) 2 = 1 (2 \sin \theta \cos \theta) ^ {2} = 1

( 2 sin θ cos θ ) 2 = + / 1 \sqrt{(2 \sin \theta \cos \theta) ^ {2}} = +/- 1

2 sin θ cos θ = + / 1 2 \sin \theta \cos \theta = +/- 1

sin ( 2 θ ) = + / 1 \sin (2 \theta) = +/- 1

θ = 45 , 135 , 225 , 315 \theta = 45, 135, 225, 315

45 + 135 + 225 + 315 = 720 45 + 135 + 225 + 315 = 720

Lucas Rodrigues
Jul 23, 2013

We can write this way : 3/4 = 1 - [sin(θ).cos(θ)]^2. So sin(θ).cos(θ) = +-1/2. Using the fundamental law of the trigonometry we will have a equation ( 4[cos(θ)]^4 - 4[cos(θ)]^2 +1=0). Lastly we will have like solution : S = {45,135,225,315}, <graus>. The sum is 720.

Albert Gav
Jul 22, 2013

sin^4 θ+2sin^2 θcos^2 θ+cos^4 θ=3/4+sin^2 θcos^2 θ

(sin^2 θ+cos^2 θ)^2=3/4+sin^2 θcos^2 θ

1=3/4+sin^2 θcos^2 θ

1/4=sin^2 θcos^2 θ

1/4=1/4(sin2θ)^2

(sin2θ)=+-1

(sin2θ)=1 then θ=45,225

sin 2θ=-1 then θ=135,315

so the sum of all θ are 45+225+135+315=720

William Mitchell
Jul 22, 2013

Let x = sin θ x=\sin\theta and y = cos θ y=\cos\theta . We rewrite the given expression as: $$(x^2+y^2)^2=\frac{3}{4}+x^2y^2$$ Since x = sin θ x=\sin\theta and y = cos θ y=\cos\theta , the expression on the left is equivalent to 1 1 .

We now have:

$$1=\frac{3}{4}+x^2y^2$$ $$\frac{1}{4}=x^2y^2$$ $$\frac{1}{2}=xy$$ In order for this to be true, x x and y y must have values of 2 2 \frac{\sqrt{2}}{2} and 2 2 -\frac{\sqrt{2}}{2} , in some permutation.

The values of θ \theta corresponding to all possible values of x x and y y that are solutions are thus: 4 5 , 13 5 , 22 5 , 45^\circ, 135^\circ, 225^\circ, and 31 5 315^\circ .

The sum of these values is: $$S=45+135+225+315$$ $$S=\boxed{720}$$

Magne Myhren
Jul 22, 2013

Using that ­ sin 2 θ = 1 cos 2 θ ­ \sin^2 \theta = 1 - \cos^2 \theta we get an equation with just cosine: cos 4 θ cos 2 θ + 1 4 = 0 \cos^4 \theta - \cos^2 \theta + \frac{1}{4} = 0 which gives cos 2 θ = 1 2 \cos^2 \theta = \frac{1}{2} and cos θ = ± 1 2 = ± 2 2 \cos \theta = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} . We know from the unit circle that cos θ = 2 2 \cos \theta = \frac{\sqrt{2}}{2} has the solution θ = 4 5 \theta = 45^\circ in the first quadrant, so by symmetry of the unit circle we obtain θ { 4 5 , 13 5 , 22 5 , 31 5 } \theta \in \{ 45^\circ , 135^\circ , 225^\circ , 315^\circ \} . The sum of these angles is 720 and is thus the answer to the problem.

Moderator note:

Good first observation that the LHS is very similar to ( sin 2 θ + cos 2 θ ) 2 (\sin^2 \theta + \cos^2 \theta) ^2 .

Hieu Pham
Jul 22, 2013

Sin^4(theta) + 2.sin^2(theta).cos^2(theta) + cos^4(theta) - sin^2(theta).cos^2(theta) = 1 - sin^2(theta).cos^2(theta) =3/4 <=> 4sin^2(theta).cos^2(theta) = 1 <=> sin(2theta) = +-1 <=> theta = 45, 135, 225, 315. So we get the sum equal 45+135+225+315 = 720

Danny He
Jul 22, 2013

s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta = 1

So ( s i n 2 θ + c o s 2 θ ) 2 = s i n 4 θ + 2 s i n 2 θ c o s 2 θ + c o s 4 θ = 1 \left(sin^2\theta+cos^2\theta\right)^2 = sin^4\theta + 2sin^2\theta cos^2\theta + cos^4\theta = 1

Subtracting the original equation we get s i n 2 θ c o s 2 θ = 1 4 sin^2\theta cos^2\theta = \frac{1}{4}

So s i n θ c o s θ = 1 2 sin\theta cos\theta = \frac{1}{2}

c o s θ = 1 s i n 2 θ cos\theta = \sqrt{1-sin^2\theta}

s i n 2 θ ( 1 s i n 2 θ ) = 1 4 sin^2\theta \left( 1-sin^2\theta\right) = \frac{1}{4}

s i n 4 θ s i n 2 θ + 1 4 = 0 sin^4\theta -sin^2\theta + \frac{1}{4} = 0

( s i n 2 θ + 1 2 ) ( s i n 2 θ 1 2 ) = 0 \left(sin^2\theta +\frac{1}{2}\right)\left(sin^2\theta - \frac{1}{2}\right) = 0

So s i n θ = ± 1 2 sin\theta = \pm \frac{1}{\sqrt{2}}

Therefore θ = 4 5 , 13 5 , 22 5 , 31 5 \theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}

45 + 135 + 225 + 315 = 720 45+135+225+315 = 720

Moderator note:

Good first observation that the LHS is very similar to ( sin 2 θ + cos 2 θ ) 2 (\sin^2 \theta + \cos^2 \theta) ^2 .

That this reply is to this version of the solution is somewhat arbitrary. I just notice I should've submitted mine. Actually calculating the angles is an unnecessary step in solving the question, thanks to the amount of symmetry. As soon as you know there's four solutions, you know the angles have to sum up to 720.

HS N - 7 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...