5 . 2 3 4 5 7 = b a
where a and b are positive coprime integers. Find a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
5 . 2 3 4 5 7 = 9 9 9 0 0 ( 5 2 3 4 5 7 − 5 2 3 ) = 9 9 9 0 0 5 2 2 9 3 4 = 4 9 9 5 0 2 6 1 4 6 7
a = 2 6 1 4 6 7
Let X = 5 . 2 3 4 5 7 = 5 . 2 3 4 5 7 4 5 7 4 5 7 … ,
1 0 0 X = 5 2 3 . 4 5 7 4 5 7 4 5 7 … ——————————(1)
1 0 0 0 0 0 X = 5 2 3 4 5 7 . 4 5 7 4 5 7 … ————————(2)
(2)-(1), get 9 9 9 0 0 X = 5 2 2 9 3 4 4 9 9 5 0 X = 2 6 1 4 6 7 X = 4 9 9 5 0 2 6 1 4 6 7
a = 2 6 1 4 6 7
Let X=5.23457457457.....
Multiple both side by 100
100x=523.457457457457..... (1)
Again multiply both side by 1000
100000x=523457.457457457... (2) Subtract (1) from (2)
We get
X=522934/99900
But here it is not a couple prime numbers so we have to 522934 and 99900 by 2
We get
X=261467/49950=a/b
Also it is cold prime
Hence
a=261467
5 . 2 3 4 5 7 a = 2 6 1 4 6 7 = 5 . 2 3 + 0 . 0 0 4 5 7 = 5 . 2 3 + 1 0 0 1 × 0 . 4 5 7 = 1 0 0 5 2 3 + 1 0 0 1 × 9 9 9 4 5 7 = 9 9 9 0 0 5 2 2 4 7 7 + 9 9 9 0 0 4 5 7 = 9 9 9 0 0 5 2 2 9 3 4 = 4 9 9 5 0 2 6 1 4 6 7
Problem Loading...
Note Loading...
Set Loading...
Proving @Munem Sahariar 's solution.
X = 5 . 2 3 4 5 7 = 5 . 2 3 + 0 . 0 0 4 5 7 = 5 . 2 3 + 0 . 0 0 4 5 7 ( 1 + 1 0 − 3 + 1 0 − 6 + ⋯ ) = 5 . 2 3 + 0 . 0 0 4 5 7 n = 1 ∑ ∞ ( 1 0 0 0 1 ) n = 5 . 2 3 + 0 . 0 0 4 5 7 ( 9 9 9 1 0 0 0 ) = 5 . 2 3 + 9 9 9 0 0 4 5 7 = 9 9 9 0 0 5 . 2 3 ( 9 9 9 0 0 ) + 4 5 7 = 9 9 9 0 0 5 . 2 3 ( 1 0 0 0 0 0 − 1 0 0 ) + 4 5 7 = 9 9 9 0 0 5 2 3 4 5 7 − 5 2 3 = 9 9 9 0 0 5 2 2 9 3 4 = 4 9 9 5 0 2 6 1 4 6 7 Munem Shariar’s solution.
Therefore, a = 2 6 1 4 6 7 .