Repeat Fractions

Algebra Level 1

1 2 + 1 4 + 1 8 + + 1 256 = ? \displaystyle \frac 12 + \frac 14 + \frac 18 + \cdots + \frac 1{256} = \ ?

1 1 \frac{1}{1} 1023 1024 \frac{1023}{1024} 255 256 \frac{255}{256} 1 2 \frac{1}{2} 1 4 \frac{1}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Elijah L
Jan 2, 2021

It's intuitive that by adding 1 256 \dfrac{1}{256} , the sum will telescope and give an answer of 1 1 . Therefore, the sum is equal to 1 1 256 1 - \dfrac{1}{256} , which evaluates to 255 256 \boxed{\dfrac{255}{256}} .

James Watson
Jan 2, 2021

The general formula for a sum of a geometric series goes as follows: n = 0 N x n x N + 1 1 x 1 \sum_{n=0}^{N} x^n \equiv \frac{x^{N+1}-1}{x-1} Here, our series starts at 1 2 \dfrac{1}{2} so we must subtract 1 from our formula. by plugging in x = 1 2 x=\dfrac{1}{2} and N = log 2 ( 256 ) = 8 N = \log_{2}(256) = 8 , se can see that 1 2 + 1 4 + 1 8 + + 1 256 = ( 1 2 ) 8 + 1 1 1 2 1 1 = 511 512 1 2 1 = 255 256 + 1 1 = 255 256 \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots + \frac{1}{256} = \frac{\left(\frac{1}{2}\right)^{8+1}-1}{\frac{1}{2}-1} - 1 = \frac{-\frac{511}{512}}{-\frac{1}{2}}-1 = \frac{255}{256} + 1 - 1 = \boxed{\frac{255}{256}}

. .
Jan 2, 2021

1 2 \frac{1}{2} + 1 4 \frac{1}{4} + 1 8 \frac{1}{8} + \cdots + 1 256 \frac{1}{256} = 128 256 \frac{128}{256} + 64 256 \frac{64}{256} + 32 256 \frac{32}{256} + \cdots + 1 256 \frac{1}{256} = 255 256 \boxed{\frac{255}{256}}

S = 1 2 + 1 4 + 1 8 + + 1 256 = 3 4 + 1 8 + 1 16 + + 1 256 = 7 8 + 1 16 + 1 32 + + 1 256 = = 127 128 + 1 256 = 255 256 \begin{aligned} S & = \frac 12 + \frac 14 + \frac 18 + \cdots + \frac 1{256} \\ & = \frac 34 + \frac 18 + \frac 1{16} + \cdots + \frac 1{256} \\ & = \frac 78 + \frac 1{16} + \frac 1{32} + \cdots + \frac 1{256} \\ & = \cdots \quad \cdots \quad \cdots \\ & = \frac {127}{128} + \frac 1{256} \\ & = \boxed{\frac {255}{256}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...