Repeat#2

2.018 19 \large 2.018\overline{19}

Is it rational or irrational?

Rational Irrational

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 10, 2018

Proving @Munem Sahariar 's solution.

X = 2.018 19 = 2.018 + 0.000 19 = 2.018 + 0.00019 ( 1 + 1 0 2 + 1 0 4 + ) = 2.018 + 0.00019 n = 1 ( 1 100 ) n = 2.018 + 0.00019 ( 100 99 ) = 2.018 + 19 99000 = 2.018 ( 99000 ) + 19 99000 = 2.018 ( 100000 1000 ) + 19 99000 = 201819 2018 99000 Munem Shariar’s solution. = 199801 99000 \begin{aligned} X & = 2.018\overline{19} \\ & = 2.018 + 0.000\overline{19} \\ & = 2.018 + 0.00019\left(1+10^{-2}+10^{-4} + \cdots \right) \\ & = 2.018 + 0.00019 \sum_{n=1}^\infty \left(\frac 1{100} \right)^n \\ & = 2.018 + 0.00019\left(\frac {100}{99}\right) \\ & = 2.018 + \frac {19}{99000} \\ & = \frac {2.018(99000) + 19}{99000} \\ & =\frac {2.018(100000-1000) + 19}{99000} \\ & = \color{#3D99F6} \frac {201819-2018}{99000} & \small \color{#3D99F6} \text{Munem Shariar's solution.} \\ & = \frac {199801}{99000} \end{aligned}

Therefore, 2.018 19 2.018\overline{19} is rational .

Munem Shahriar
Jan 9, 2018

2.018 19 = ( 201819 2018 ) 99000 = 199801 99000 2.018\overline{19} = \frac{(201819 - 2018)}{99000} = \frac{199801}{99000}

Hence it is rational.

x = 2.018191919... { 1000 x = 2018.191919... 100000 x = 201819.191919... x = 2.018191919... \\ \begin{cases} 1000x = 2018.191919... \\ 100000x = 201819.191919... \end{cases}

We can subtract the two equations, so we have:

99000 x = 199801 x = 199801 99000 99000x = 199801 \\ x = \frac{199801}{99000}

Hence 2.018 19 2.018 \overline{19} is rational .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...