Repeated decimal, part 3B

0. 001122334455667789 = 1 N 0.\overline{001122334455667789}=\frac{1}{N}

Given that N N is a 3-digit integer, find N N .

Note : The repeated digits are from 00, 11, 22, ..., 77,(those multiple 11), followed by 89, the period is 18.


The answer is 891.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
May 13, 2019

Comparing their decimal expansions, we see 100 N 1 N = 0.1111 = 1 9 \frac{100}{N}-\frac{1}{N}=0.1111\ldots=\frac{1}{9} .

In other words, 99 N = 1 9 \frac{99}{N}=\frac{1}{9} and so N = 891 N=\boxed{891} .

Chew-Seong Cheong
May 13, 2019

0. 001122334455667789 18 digits = 1122334455667789 999999999999999999 18 digits = 1 891 0.\underbrace{\overline{001122334455667789}}_{\text{18 digits}} = \dfrac {1122334455667789}{\underbrace{999999999999999999}_{\text{18 digits}}} = \dfrac 1{891}

Therefore, N = 891 N = \boxed{891}


Proof:

0. 001122334455667789 18 digits = 0.001122334455667789 k = 0 1 0 18 k = 0.001122334455667789 × 1 1 1 0 18 = 0.001122334455667789 × 1 0 18 1 0 18 1 = 1122334455667789 999999999999999999 18 digits \begin{aligned} 0.\underbrace{\overline{001122334455667789}}_{\text{18 digits}} & = 0.001122334455667789 \sum_{k=0}^\infty 10^{-18k} \\ & = 0.001122334455667789 \times \frac 1{1-10^{-18}} \\ & = 0.001122334455667789 \times \frac {10^{18}}{10^{18}-1} \\ & = \frac {1122334455667789}{\underbrace{999999999999999999}_{\text{18 digits}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...