Repeated roots!

Algebra Level 5

Let α \alpha be a repeated root of p ( x ) = x 3 + 3 a x 2 + 3 b x + c = 0 p\left( x \right) ={ x }^{ 3 }+{ 3ax }^{ 2 }+{ 3bx }+c=0 . Then, which of the following options is incorrect?

α \alpha is a root of x 2 + 2 a x + b = 0 x^2+2ax+b=0 α = a b c a 2 b \alpha =\frac { ab-c }{ a^2-b} α = c a b 2 ( a 2 b ) \alpha =\frac { c-ab }{ 2\left( { a }^{ 2 }-b \right) }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 13, 2019

Let the other root be β \beta . Then by Vieta's formula , we have:

{ 2 α + β = 3 a . . . ( 1 ) α 2 + 2 α β = 3 b . . . ( 2 ) α 2 β = c . . . ( 3 ) \begin{cases} 2\alpha + \beta = - 3a & ...(1) \\ \alpha^2 + 2\alpha \beta = 3b & ...(2) \\ \alpha^2\beta = -c & ...(3) \end{cases}

From 2 α × ( 1 ) ( 2 ) 2\alpha \times (1) - (2) :

3 α 2 = 6 a α 3 b α 2 + 2 a α + b = 0 . . . ( 4 ) \begin{aligned} 3\alpha^2 & = - 6a\alpha - 3b \\ \implies \alpha^2 + 2a \alpha + b & = 0 & ...(4) \end{aligned}

From ( 4 ) (4) we note that α \alpha is a root of x 2 + 2 a x + b = 0 x^2 + 2ax + b=0 .

From α × ( 2 ) \alpha \times (2) :

α 3 + 2 α 2 β = 3 b α Note that ( 3 ) : α 2 β = c α 3 = 3 b α + 2 c . . . ( 2 a ) \begin{aligned} \alpha^3 + 2 \blue{\alpha^2 \beta} & = 3b\alpha & \small \blue{\text{Note that }(3): \ \alpha^2\beta = -c} \\ \implies \alpha^3 & = 3b\alpha + 2\blue c & ...(2a) \end{aligned}

From α × ( 4 ) \alpha \times (4) :

α 3 + 2 a α 2 + b α = 0 Note that ( 2 a ) : α 3 = 3 b α + 2 c 3 b α + 2 c + 2 a ( 2 a α b ) + b α = 0 From ( 4 ) : α 3 = 2 a α b 4 b α + 2 c 4 a 2 α 2 a b = 0 2 ( b a 2 ) α + c a b = 0 α = c a b 2 ( a 2 b ) \begin{aligned} \blue{\alpha^3} + 2a \red{\alpha^2} + b\alpha & = 0 & \small \blue{\text{Note that }(2a): \ \alpha^3 = 3b\alpha + 2 c} \\ \blue{3b\alpha + 2 c} + 2a \red{(-2a \alpha - b)} + b\alpha & = 0 & \small \red{\text{From }(4): \ \alpha^3 = -2a \alpha - b} \\ 4b\alpha + 2c - 4a^2\alpha - 2ab & = 0 \\ 2(b-a^2)\alpha + c - ab & = 0 \\ \implies \alpha & = \frac {c-ab}{2(a^2-b)} \end{aligned}

Therefore, the incorrect option is α = a b c a 2 b \boxed{\alpha = \frac {ab-c}{a^2-b}} .

Note :- FTA means the Fundamental Theorem of Algebra view wiki - Fundamental Theorem of Algebra

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...