Repeated

Algebra Level 4

{ a + b + c = 0 a 2 + b 2 + c 2 = 78 a 5 + b 5 + c 5 = 13650 \large \begin{cases} a + b + c &= 0\\ a^2 + b^2 + c^2 &= 78\\ a^5 + b^5 + c^5 &= -13650\\ \end{cases}

Calculate a 7 + b 7 + c 7 a^7 + b^7 + c^7 .


This is part of the series: " It's easy, believe me! "


The answer is -745290.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 29, 2017

Let P n = { 0 for n < 0 1 for n = 0 a n + b n + c n for n 1 P_n = \begin{cases} 0 & \text{for }n < 0 \\ 1 & \text{for }n = 0 \\ a^n + b^n + c^n & \text{for }n \ge 1 \end{cases} , where n Z n \in \mathbb Z ; and { S 1 = a + b + c S 2 = a b + b c + c a S 3 = a b c \begin{cases} S_1 = a+b+c \\ S_2 = ab+bc+ca \\ S_3 = abc \end{cases} . Then Newton's sums method is given by:

P n = S 1 P n 1 α 2 S 2 P n 2 + α 3 S 3 P n 3 , where α k = { k for n = k 1 for n > k P_n = S_1P_{n-1}-\alpha_2S_2P_{n-2} + \alpha_3S_3P_{n-3} \text{, where }\alpha_k = \begin{cases} k & \text{for }n = k \\ 1 & \text{for }n > k \end{cases}

Therefore, we have:

\(\begin{array} {} P_1 = S_1P_0 = 0 \\ P_2 = S_1P_1 - 2S_2P_0 = 78 & \implies \color{blue} S_2 = - 39 \\ P_3 = 0 - S_1P_1 + 3S_3P_0 & \implies \color{blue} S_3 = \frac 13P_3 \\ P_4 = 39P_2 + S_3P_1 = 3042 \\ P_5 = 39P_3 + S_3P_2 = 195S_3 = -13650 & \implies \color{blue} S_3 = -70 \\ P_7 = 39P_5 -70P_4 = -745290 \end{array} \)

a 7 + b 7 + c 7 = P 7 = 745290 \implies a^7+b^7+c^7 = P_7 = \boxed{-745290}

You can also prove that 7 ( a 2 + b 2 + c 2 ) ( a 5 + b 5 + c 5 ) = 10 ( a 7 + b 7 + c 7 ) 7(a^2 + b^2 + c^2)(a^5 + b^5 + c^5) = 10(a^7 + b^7 + c^7) but coming with the idea itself in the first place is hard already.

Thành Đạt Lê - 3 years, 7 months ago

Log in to reply

is this problem original ?

André Hucek - 3 years, 7 months ago

Log in to reply

Yes! Why would you think of that? Also I'm pretty sure that b 1 b 2 . . . b n 1 b n ( x a 1 + y a 1 + z a 1 ) ( x a 2 + y a 2 + z a 2 ) . . . ( x a n 1 + y a n 1 + z a n 1 ) ( x a n + y a n + z a n ) = a 1 a 2 . . . a n 1 a n ( x b 1 + y b 1 + z b 1 ) ( x b 2 + y b 2 + z b 2 ) . . . ( x b n 1 + y b n 1 + z b n 1 ) ( x b n + y b n + z b n ) b_1b_2...b_{n - 1}b_n(x^{a_1} + y^{a_1} + z^{a_1})(x^{a_2} + y^{a_2} + z^{a_2})...(x^{a_{n - 1}} + y^{a_{n - 1}} + z^{a_{n - 1}})(x^{a_n} + y^{a_n} + z^{a_n}) = a_1a_2...a_{n - 1}a_n(x^{b_1} + y^{b_1} + z^{b_1})(x^{b_2} + y^{b_2} + z^{b_2})...(x^{b_{n - 1}} + y^{b_{n - 1}} + z^{b_{n - 1}})(x^{b_n} + y^{b_n} + z^{b_n}) if a + b + c = 0 a + b + c = 0

Thành Đạt Lê - 3 years, 7 months ago

How do you prove that?

Zainul Niaz - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...