Repeating Decimal in Base k

Algebra Level 3

For some positive integer k k , the repeating base- k k representation of the base-ten fraction 5 39 \dfrac{5}{39} is 0. 35 k = 0.353535353535 k 0.\overline{35}_{k} = {0.353535353535\cdots}_{k} . What is k k ?

Inspiration


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 15, 2019

Similar explanation with @Joshua Lowrance 's

Based on how number system work, we have:

0. 35 k = ( 3 k + 5 k 2 + 3 k 3 + 5 k 4 + ) 10 = ( 5 39 ) 10 \begin{aligned} 0.\overline{35}_k & = \left(\frac 3k + \frac 5{k^2} + \frac 3{k^3} + \frac 5{k^4} + \cdots \right)_{10} = \left(\frac 5{39}\right)_{10} \end{aligned}

Therefore in base-10,

n = 1 3 k n + n = 1 2 k 2 n = 5 39 3 k ( 1 1 1 k ) + 2 k 2 ( 1 1 1 k 2 ) = 5 39 3 k 1 + 2 k 2 1 = 5 39 3 ( k + 1 ) + 2 k 2 1 = 5 39 3 k + 5 k 2 1 = 5 39 117 k + 195 = 5 k 2 5 5 k 2 117 k 200 = 0 ( 5 k + 8 ) ( k 25 ) = 0 k = 25 Since k is an integer. \begin{aligned} \sum_{n=1}^\infty \frac 3{k^n} + \sum_{n=1}^\infty \frac 2{k^{2n}} & = \frac 5{39} \\ \frac 3k \left(\frac 1{1-\frac 1k}\right) + \frac 2{k^2}\left(\frac 1{1-\frac 1{k^2}} \right) & = \frac 5{39} \\ \frac 3{k-1} + \frac 2{k^2-1} & = \frac 5{39} \\ \frac {3(k+1)+2}{k^2-1} & = \frac 5{39} \\ \frac {3k+5}{k^2-1} & = \frac 5{39} \\ 117k + 195 & = 5k^2 - 5 \\ 5k^2 - 117k - 200 & = 0 \\ (5k+8)(k-25) & = 0 \\ \implies k & = \boxed{25} & \small \color{#3D99F6} \text{Since }k \text{ is an integer.} \end{aligned}

I had gone to 2nd last line but then I did silly mistake...

Arka Dutta - 2 years, 2 months ago

Log in to reply

Be more careful the next round.

Chew-Seong Cheong - 2 years, 2 months ago
Meet Patel
Feb 26, 2019

Joshua Lowrance
Feb 14, 2019

A repeating decimal in base- k k has the form A k + B k 2 + C k 3 + \frac{A}{k}+\frac{B}{k^2}+\frac{C}{k^3}+\cdots . This repeating decimal with look like this: 3 k + 5 k 2 + 3 k 3 + 5 k 4 + 3 k 5 + \frac{3}{k}+\frac{5}{k^2}+\frac{3}{k^3}+\frac{5}{k^4}+\frac{3}{k^5}+\cdots Separating it out: 3 k + 3 k 2 + 3 k 3 + 3 k 4 + 3 k 4 + 3 k 5 + + 2 k 2 + 2 k 4 + 2 k 6 + \frac{3}{k}+\frac{3}{k^2}+\frac{3}{k^3}+\frac{3}{k^4}+\frac{3}{k^4}+\frac{3}{k^5}+\cdots +\frac{2}{k^2}+\frac{2}{k^4}+\frac{2}{k^6}+\cdots Factoring out the numerator: 3 ( 1 k + 1 k 2 + 1 k 3 + 1 k 4 + ) + 2 ( 1 k 2 + 1 k 4 + 1 k 6 + ) 3(\frac{1}{k}+\frac{1}{k^2}+\frac{1}{k^3}+\frac{1}{k^4}+\cdots)+2(\frac{1}{k^2}+\frac{1}{k^4}+\frac{1}{k^6}+\cdots) Changing the last part: 3 ( 1 k + 1 k 2 + 1 k 3 + 1 k 4 + ) + 2 ( 1 ( k 2 ) + 1 ( k 2 ) 2 + 1 ( k 2 ) 3 + 1 ( k 2 ) 4 + ) 3(\frac{1}{k}+\frac{1}{k^2}+\frac{1}{k^3}+\frac{1}{k^4}+\cdots)+2(\frac{1}{(k^2)}+\frac{1}{(k^2)^2}+\frac{1}{(k^2)^3}+\frac{1}{(k^2)^4}+\cdots) Now, we know that 1 + r + r 2 + r 3 + r 4 + r 5 + = 1 1 r 1+r+r^2+r^3+r^4+r^5+\cdots =\frac{1}{1-r} , if 0 < r < 1 0<r<1 . Because k k is a positive integer greater than 1 1 (as base 1 1 would just be unary, a series of only 1 1 's), 0 < 1 k 2 < 1 k < 1 0<\frac{1}{k^2}<\frac{1}{k}<1 , so this formula applies. However, we are missing the starting 1 1 in both equations, but we can just subtract it out. 3 ( 1 k + 1 k 2 + 1 k 3 + 1 k 4 + ) + 2 ( 1 ( k 2 ) + 1 ( k 2 ) 2 + 1 ( k 2 ) 3 + 1 ( k 2 ) 4 + ) 3(\frac{1}{k}+\frac{1}{k^2}+\frac{1}{k^3}+\frac{1}{k^4}+\cdots)+2(\frac{1}{(k^2)}+\frac{1}{(k^2)^2}+\frac{1}{(k^2)^3}+\frac{1}{(k^2)^4}+\cdots) 3 ( 1 1 1 k 1 ) + 2 ( 1 1 1 k 2 1 ) 3(\frac{1}{1-\frac{1}{k}}-1)+2(\frac{1}{1-\frac{1}{k^2}}-1) 3 ( k k 1 k 1 k 1 ) + 2 ( k 2 k 2 1 k 2 1 k 2 1 ) 3(\frac{k}{k-1}-\frac{k-1}{k-1})+2(\frac{k^2}{k^2-1}-\frac{k^2-1}{k^2-1}) 3 ( 1 k 1 ) + 2 ( 1 k 2 1 ) 3(\frac{1}{k-1})+2(\frac{1}{k^2-1}) We are told that this equals 5 39 \frac{5}{39} : 3 ( 1 k 1 ) + 2 ( 1 k 2 1 ) = 5 39 3(\frac{1}{k-1})+2(\frac{1}{k^2-1})=\frac{5}{39} 3 k 1 + 2 k 2 1 = 5 39 \frac{3}{k-1}+\frac{2}{k^2-1}=\frac{5}{39} 3 ( k + 1 ) ( k 1 ) ( k + 1 ) + 2 k 2 1 = 5 39 \frac{3(k+1)}{(k-1)(k+1)}+\frac{2}{k^2-1}=\frac{5}{39} 3 k + 3 k 2 1 + 2 k 2 1 = 5 39 \frac{3k+3}{k^2-1}+\frac{2}{k^2-1}=\frac{5}{39} 3 k + 5 ( k 2 1 ) = 5 39 \frac{3k+5}{(k^2-1)}=\frac{5}{39} 117 k + 195 = 5 k 2 5 117k+195=5k^2-5 5 k 2 117 k 200 = 0 5k^2-117k-200=0 k = 117 ± 11 7 2 + 4 ( 200 ) ( 5 ) 2 ( 5 ) = 1.6 , 25 k=\frac{117 \pm \sqrt{117^2+4(200)(5)}}{2(5)}=-1.6,25 And because k k is a positive integer k = 25 k=25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...