Repetition of digits

Algebra Level 3

555555 5 100 5’s × 999999 9 200 9’s 555555 5 300 5’s + 555555 5 200 5’s + 555555 5 100 5’s = ? \underbrace{555555\ldots5}_{\text{100 5's}} \times \underbrace{999999\ldots9}_{\text{200 9's}} - \underbrace{555555\ldots5}_{\text{300 5's}} + \underbrace{555555\ldots5}_{\text{200 5's}} + \underbrace{555555\ldots5}_{\text{100 5's}} =\, ?

99999999 0 500000 555555555

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohamed aboalamayem formula for repetition digits : ( X )n . ( 9 )m = x - ( x )n - ( x )m . So : ( x )n . ( 9 )m - x + ( x )n + ( x )m = 0 , each of n , m is integer greater than (0) . So we have : ( 5 )100 . ( 9 )200 - 5 + ( 5 )200 + ( 5 )100 = 0 . thus there are many my formulas of mine for repetition of digits .

blue ( x ) = ( x )(n+m) , blue ( 5 ) = ( 5 )300 , as we know .

mohamed aboalamayem - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...