Complex Numbers Spaced Around The Unit Circle

Algebra Level 4

Let z = 2 + 3 2 + i 2 3 2 z = \dfrac{\sqrt{2 + \sqrt{3}}}{2} + i \cdot \dfrac{\sqrt{2 - \sqrt{3}}}{2} . Find k = 0 2016 z k \displaystyle \sum_{k=0}^{2016} z^k .

Clarification : i = 1 i = \sqrt{-1} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

z = 2 + 3 2 + i 2 3 2 As ( 2 3 2 ) 2 + ( 2 + 3 2 ) 2 = 1 , we can assume = cos θ + i sin θ \begin{aligned} z & = \frac{\sqrt{2+\sqrt{3}}}{2} + i \frac{\sqrt{2-\sqrt{3}}}{2} \quad \quad \small \color{#3D99F6}{\text{As } \left(\frac{\sqrt{2-\sqrt{3}}}{2}\right)^2 + \left(\frac{\sqrt{2+\sqrt{3}}}{2}\right)^2 = 1 \text{, we can assume}} \\ & = \cos \theta + i \sin \theta \end{aligned}

tan θ = 2 3 2 + 3 = 2 3 θ = π 12 z = e i π 12 \begin{aligned} \Rightarrow \tan \theta & = \frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}} \\ & = 2-\sqrt{3} \\ \Rightarrow \theta & = \frac{\pi}{12} \\ \Rightarrow z & = e^{i\frac{\pi}{12}} \end{aligned}

Therefore, z z is the 2 4 th 24^{\text{th}} root of unit, and that z 24 n = z 0 = 1 z^{24n} = z^0 = 1 , k = 0 24 n 1 z k = 0 \displaystyle \sum_{k=0}^{24n-1} z^k = 0 and hence k = 0 24 n z j = 1 \displaystyle \sum_{k=0}^{24n} z^j = 1 , where n n is a natural number. Since 24 2016 24|2016 , we have k = 0 2016 z k = 1 \displaystyle \sum_{k=0}^{2016} z^k = \boxed{1} .

Nice solution sir,thank you, nevertheless I have a question(don't misunderstand me): Let z = a + i b z = a + i b . I know that a 2 + b 2 = 1 a^2 + b^2 = 1 and for this we can assume z = cos θ + i sin θ z = \cos \theta + i \sin \theta . when you say in the first step "as a < b < 1, we can assume" z = cos θ + i sin θ z = \cos \theta + i \sin \theta , how do you get it? I can't get it...

Guillermo Templado - 5 years, 3 months ago

Log in to reply

Yes, you are right. My mistake. Thanks.

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

it doesn't matter, don't worry...

Guillermo Templado - 5 years, 3 months ago
Rishabh Jain
Mar 1, 2016

z = 4 + 2 3 2 2 + i 4 2 3 2 2 = cos ( π 12 ) + i sin ( π 12 ) = e i π 12 ( D e M o i v r e s L a w ) \begin{aligned}\\& z=\dfrac{\sqrt{4+2\sqrt 3}}{2\sqrt 2}+i\dfrac{\sqrt{4-2\sqrt 3}}{2\sqrt 2}\\&=\cos(\frac{\pi}{12})+i\sin(\frac{\pi}{12})\\&=\large e^{\frac{i\pi}{12}}~~(\color{#3D99F6}{\small{De~ Moivre's ~Law}})\end{aligned} k = 0 2016 z k = k = 0 2016 e k i π 12 = e 2017 i π 12 1 e i π 12 1 ( S u m o f G P ) = 1 \large \therefore \displaystyle \sum_{k=0}^{2016} z^k= \displaystyle \sum_{k=0}^{2016} e^{\frac{ki\pi}{12}}~~~~~~~~~~~~\\~~~~~~~~~~~~=\dfrac{e^{\frac{2017i\pi}{12}}-1}{e^{\frac{i\pi}{12}}-1}~~(\color{#3D99F6}{\small{Sum ~of~GP}}) \\~~~~=\huge \boxed 1 ( e 2017 i π 12 = e i π 12 ) ~~~~~~~~~(\because e^{\frac{2017i\pi}{12}}=e^{\frac{i\pi}{12}})

Note : To show that cos π 12 = 4 + 2 3 2 2 \cos \dfrac \pi{12} = \dfrac{\sqrt{4+2\sqrt3}}{2\sqrt2} , apply the double angle identity , cos ( 2 x ) = 2 cos 2 ( x ) 1 \cos(2x) = 2\cos^2(x) - 1 for x = π 12 x = \dfrac\pi{12} . And to calculate sin π 12 \sin \dfrac\pi{12} , apply sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2x = 1 .

Nice solution Rishab, thank you. One suggestion (don't misunderstand me) : In the first step you forgot i, and you don't need to multiply numerator and denominator by 2 \sqrt{2} . Notice : cos 15 º = 1 + cos 30 º 2 \cos 15 º = \sqrt{\frac{ 1 + \cos 30 º}{2}}

Guillermo Templado - 5 years, 3 months ago

Log in to reply

Right... Thanks.

Rishabh Jain - 5 years, 3 months ago

Did it the same way!! (+1)

Harsh Khatri - 5 years, 3 months ago
Pradeep Tripathi
Oct 17, 2018

The given equation is the 12th root of unity. So z^12=1; z^11+z+^10+z^9+z^8+z^7+z^6+z^5+z^4+z^3+z^2+z+1=0; By using this two equations we can find that the answer is 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...