Research

Algebra Level 3

If a , b > 0 a,b> 0 Find a+b+2014 if A= ( a 2 + b + 3 4 ) ( b 2 + a + 3 4 ) = ( 2 a + 1 2 ) ( 2 b + 1 2 ) (a^2+b+\frac{3}{4})(b^2+a+\frac{3}{4})=(2a+\frac{1}{2})(2b+\frac{1}{2})


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Oct 22, 2015

ok thus, ( a 1 2 ) 2 0 (a-\frac{1}{2})^2\geq 0 ( b 1 2 ) 2 0 (b-\frac{1}{2})^2\geq 0 a 2 + 1 4 a \Rightarrow a^2+\frac{1}{4}\geq a b 2 + 1 4 b b^2+\frac{1}{4}\geq b Overall ( a 2 + b + 3 4 ) ( b 2 + a + 3 4 ) ( a + b + 1 2 ) ( a + b + 1 2 ) = ( a + b + 1 2 ) 2 (a^2+b+\frac{3}{4})(b^2+a+\frac{3}{4})\geq (a+b+\frac{1}{2})(a+b+\frac{1}{2})=(a+b+\frac{1}{2})^2 = ( a + 1 4 + b + 1 4 ) 2 4 ( a + 1 4 ) ( b + 1 4 ) = ( 2 a + 1 2 ) ( 2 b + 1 2 ) =(a+\frac{1}{4}+b+\frac{1}{4})^2\geq 4(a+\frac{1}{4})(b+\frac{1}{4})=(2a+\frac{1}{2})(2b+\frac{1}{2}) a = b = 1 2 \Rightarrow a=b=\frac{1}{2} a + b + 2014 = 1 2 + 1 2 + 2014 = 2015 \rightarrow a+b+2014=\frac{1}{2}+\frac{1}{2}+2014=2015 That is all

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...