!!Residue!!

What is the remainder when 21 ! 21! is divided by 23 23 ?

Notation: ! ! denotes the factorial notation . For example: 8 ! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 8! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mahdi Raza
Jan 13, 2020

\newline Let, 21 ! a ( m o d 23 ) 21! \equiv a\pmod{23} \newline 22 21 ! 22 a ( m o d 23 ) 22\cdot21! \equiv 22\cdot a\pmod{23} \newline 22 ! 22 a ( m o d 23 ) 22! \equiv 22\cdot a\pmod{23}

But, from Wilson's theorem, we know that 22 ! 1 ( m o d 23 ) 22! \equiv -1 \pmod {23}

\therefore 22 a 22 ! 1 ( m o d 23 ) 22\cdot a \equiv 22! \equiv -1 \pmod {23} 22 a 1 ( m o d 23 ) 22\cdot a \equiv -1 \pmod {23} 22 a 1 + 23 ( m o d 23 ) 22\cdot a \equiv -1+23 \pmod {23} 22 a 22 ( m o d 23 ) 22\cdot a \equiv 22 \pmod {23} a 1 ( m o d 23 ) a \equiv 1 \pmod {23}

Hence we get the remainder as 1

Chew-Seong Cheong
Jan 22, 2020

By Wilson's theorem , ( n 1 ) ! 1 (mod n) (n-1)! \equiv -1 \text{ (mod n)} , where positive integer n > 1 n>1 is a prime. Since 23 is a prime,

22 ! 1 (mod 23) 22 × 21 ! 22 (mod 23) 21 ! 1 (mod 23) \begin{aligned} 22 ! & \equiv - 1 \text{ (mod 23)} \\ 22 \times 21! & \equiv 22 \text{ (mod 23)} \\ \implies 21! & \equiv \boxed 1 \text{ (mod 23)} \end{aligned}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...