Resist the Resistances

The resistance of series combination of two resistances is S . When the same two resistances are joined in parallel, the net resistance is P . If S=nP , then find minimum possible value of n .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vighnesh Raut
Jan 29, 2015

Let two resistances be A and B .

So, S=A+B and P= A B A + B \frac { AB }{ A+B } .

S = n P A + B = n A B A + B \because \quad S=nP\\ A+B=\frac { nAB }{ A+B }

( A + B ) 2 = n A B A 2 + B 2 + 2 A B = n A B { (A+B) }^{ 2 }=nAB\\ { A }^{ 2 }+{ B }^{ 2 }+2AB=nAB

now dividing both sides with AB, we get ,

A 2 A B + B 2 A B + 2 = n \therefore \frac { { A }^{ 2 } }{ AB } +\frac { { B }^{ 2 } }{ AB } +2=n

A B + B A = n 2 \frac { A }{ B } +\frac { B }{ A } =n-2

Here, using A . M . G . M . A.M.\ge G.M. on A B a n d B A \quad \frac { A }{ B } \quad and\quad \frac { B }{ A } we get,

A B + B A 2 A B × B A \frac { \frac { A }{ B } +\frac { B }{ A } }{ 2 } \ge \sqrt { \frac { A }{ B } \times \frac { B }{ A } }

So, A B + B A 2 n 2 2 n 4 \frac { A }{ B } +\frac { B }{ A } \ge 2\\ n-2\ge 2\\ n\ge 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...