Respective values

Algebra Level 2

The fraction 5 x 11 2 x 2 + x 6 \dfrac{5x - 11}{2x^2 + x - 6} is obtained by adding the two fractions G x + 2 \dfrac{G}{x + 2} and W 2 x 3 \dfrac{W}{2x - 3} , where G G and W W are integers.

What are values of G G and W W ?


Try this: All of my problems

G = 3 , W = 1 G = 3 , \ W = -1 G = 1 , W = 3 G = -1 , \ W = 3 G = 2 , W = 2 G = 2 , \ W = 2 G = 5 x , W = 11 G = 5x , \ W =11 G = 0 , W = 0 G = 0, \ W = 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

5 x 11 2 x 2 + x 6 = 5 x 11 ( x + 2 ) ( 2 x 3 ) G x + 2 + W 2 x 3 = 5 x 11 ( x + 2 ) ( 2 x 3 ) Multiplying both sides by x + 2 G + W ( x + 2 ) 2 x 3 = 5 x 11 2 x 3 Putting x = 2 G = 5 ( 2 ) 11 2 ( 2 ) 3 = 3 Similarly × ( 2 x 3 ) and x = 3 2 W = 5 ( 3 2 ) 11 ( 3 2 ) + 2 = 1 \begin{aligned} \frac {5x-11}{2x^2+x-6} & = \frac {5x-11}{(x+2)(2x-3)} \\ \implies \frac G{x+2} + \frac W{2x-3} & = \frac {5x-11}{(x+2)(2x-3)} & \small \color{#3D99F6} \text{Multiplying both sides by }x+2 \\ G + \frac {W(x+2)}{2x-3} & = \frac {5x-11}{2x-3} & \small \color{#3D99F6} \text{Putting }x=-2 \\ \implies G & = \frac {5(-2)-11}{2(-2)-3} = 3 & \small \color{#3D99F6} \text{Similarly }\times (2x-3) \text{ and }x=\frac 32 \\ \implies W & = \frac {5\left(\frac 32\right)-11}{\left(\frac 32\right)+2} = -1 \end{aligned}

G = 3 , W = 1 \implies \boxed{G = 3, \ W = -1}

Marta Reece
May 29, 2017

5 x 11 2 x 2 + x 6 = G ( x + 2 ) + W 2 x 3 \dfrac{5x - 11}{2x^2 + x - 6}=\dfrac{G}{(x + 2)}+\dfrac{W}{2x - 3}

5 x 11 2 x 2 + x 6 = G ( 2 x 3 ) + W ( x + 2 ) 2 x 2 + x 6 \dfrac{5x - 11}{2x^2 + x - 6}=\dfrac{G(2x-3)+W(x+2)}{2x^2 + x - 6}

G ( 2 x 3 ) + W ( x + 2 ) = 5 x 11 G(2x-3)+W(x+2)=5x - 11

This is equivalent to a system of equations for G and W

2 G + W = 5 2G+W=5

3 G + 2 W = 11 3G+2W=11

Solution is G = 3 , W = 1 \boxed{G=3, W=-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...