Acorn Spheroform

Algebra Level 2

A = ( 710 113 252050 76614 ) R 2 V = ( 710 339 126025 76614 ) R 3 A = \left ( \dfrac{710}{113} - \dfrac{252050}{76614} \right) R^2 \qquad \qquad V = \left( \dfrac{710}{339} - \dfrac{126025}{76614} \right) R^3

Let A A and V V denote the area and volume of a Reuleaux triangle spheroform , respectively, where R R is a parameter.

Find the value of R R satisfying A V = 646 97 6.65979 \dfrac AV = \dfrac{646}{97} \approx 6.65979\ldots .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jul 13, 2016

Area = ( 710 113 252050 76614 ) R 2 2.9933 R 2 =\left(\dfrac{710}{113}-\dfrac{252050}{76614}\right)R^2\approx 2.9933R^2

Volume = ( 710 339 126025 76614 ) R 3 0.4495 R 3 =\left(\dfrac{710}{339}-\dfrac{126025}{76614}\right)R^3\approx 0.4495R^3

Area ÷ \div Volume = 6.6598 =6.6598

2.9933 R 2 0.4495 R 3 = 6.6598 6.6592 R = 6.6598 R = 6.6592 6.6598 0.9999 1 \dfrac{2.9933R^2}{0.4495R^3}=6.6598\\ \dfrac{6.6592}{R}=6.6598\\ R=\dfrac{6.6592}{6.6598}\approx0.9999\approx\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...