Reverse fraction?

Algebra Level 3

If p a + q b + r c = 1 \dfrac{p}{a}+ \dfrac{q}{b}+\dfrac{r}{c}= 1 and a p + b q + c r = 0 \dfrac{a}{p}+\dfrac{b}{q}+\dfrac{c}{r}=0 then the value of p 2 a 2 + q 2 b 2 + r 2 c 2 = ? \dfrac{p^2}{a^2}+\dfrac{q^2}{b^2}+\dfrac{r^2}{c^2} =\space ?

0 -11 9 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
May 15, 2018

Let p a = x , q b = y , r c = z \frac pa=x,\frac qb=y,\frac rc=z ,we get x + y + z = 1 , 1 x + 1 y + 1 z = 0 , x y + y z + x z = 0 , x 2 + y 2 + z 2 = ( x + y + z ) 2 2 ( x y + y z + z x ) = 1 x+y+z=1,\frac1x+\frac1y+\frac1z=0,xy+yz+xz=0,x^2+y^2+z^2={(x+y+z)}^2-2(xy+yz+zx)=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...