Reverse QM-AM

Algebra Level 3

Find the smallest positive real number c c such that for all non-negative real numbers x , y x,y , we have x + y 2 + c x y x 2 + y 2 2 . \frac{x+y}2+c|x-y|\ge\sqrt{\frac {x^2+y^2}2}.


Bonus: Generalize this for n n non-negative real numbers.


The answer is 0.207107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Kent
Aug 1, 2019

We know that x 0 , y 0 , c > 0 x\ge 0, y\ge 0, c>0 . Since the inequality is always stands when x = y x=y independently from c c , let's assume that x y x\neq y .

Let u = x + y , v = x y u=x+y, v=\left| x-y \right| . It's apparent that u v > 0 u\ge v>0 .

Then, x 2 + y 2 = 1 2 ( 2 x 2 + 2 y 2 ) = 1 2 ( x 2 + 2 x y + y 2 + x 2 2 x y + y 2 ) = 1 2 ( ( x + y ) 2 + ( x y ) 2 ) = 1 2 ( u 2 + v 2 ) { x }^{ 2 }+{ y }^{ 2 }=\frac { 1 }{ 2 } \left( 2{ x }^{ 2 }+2{ y }^{ 2 } \right) =\frac { 1 }{ 2 } \left( { x }^{ 2 }+2xy+{ y }^{ 2 }+{ x }^{ 2 }-2xy+{ y }^{ 2 } \right) =\frac { 1 }{ 2 } \left( { \left( x+y \right) }^{ 2 }+{ \left( x-y \right) }^{ 2 } \right) =\frac { 1 }{ 2 } ({ u }^{ 2 }+{ v }^{ 2 }) .

Now, let's rewrite the inequality:

u 2 + c v 1 4 ( u 2 + v 2 ) \frac { u }{ 2 } +c\cdot v\ge \sqrt { \frac { 1 }{ 4 } \left( { u }^{ 2 }+{ v }^{ 2 } \right) }

1 4 u 2 + c u v + c 2 v 2 1 4 u 2 + 1 4 v 2 \frac { 1 }{ 4 } { u }^{ 2 }+c\cdot uv+{ c }^{ 2 }\cdot { v }^{ 2 }\ge \frac { 1 }{ 4 } { u }^{ 2 }+\frac { 1 }{ 4 } { v }^{ 2 }

c u v + c 2 v 2 1 4 v 2 c\cdot uv+{ c }^{ 2 }\cdot { v }^{ 2 }\ge \frac { 1 }{ 4 } { v }^{ 2 }

c u v + c 2 1 4 c\cdot \frac { u }{ v } +{ c }^{ 2 }\ge \frac { 1 }{ 4 }

Let t = u v , t 1 t=\frac { u }{ v } ,\quad t\ge 1 :

c 2 + t c 1 4 0 { c }^{ 2 }+t\cdot c-\frac { 1 }{ 4 } \ge 0

The roots are c 1 , 2 = t ± t 2 + 1 2 { c }_{ 1,2 }=\frac { -t\pm \sqrt { { t }^{ 2 }+1 } }{ 2 } . Since c > 0 c>0 , then c c 2 = t + t 2 + 1 2 c\ge { c }_{ 2 }=\frac { -t+\sqrt { { t }^{ 2 }+1 } }{ 2 } .

f ( t ) = 1 + t 2 + 1 2 f\left( t \right) =\frac { -1+\sqrt { { t }^{ 2 }+1 } }{ 2 } is a descending function, meaning the maximum is reached at t = 1 t=1 . That means c f ( 1 ) = 2 1 2 c\ge f\left( 1 \right) =\boxed { \frac { \sqrt { 2 } -1 }{ 2 } }

Note: t = 1 t=1 when u = v u=v meaning either x x or y y equals zero.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...