If the possible positive values of in the equation
can be express in the form for , solve for:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
3 a + b + 3 a − b = 1 cubing the whole expression yields: a + b + a − b + 3 3 a 2 − b = 1 3 a 2 − b = 3 1 − 2 a a 2 − b = 2 7 ( 1 − 2 a ) 3 ⟹ b = a 2 − 2 7 ( 1 − 2 a ) 3
to be b be an integer, 1 - 2a must be in the form 3k so that, 2 7 ∣ ( 1 − 2 a ) 3 . 1 − 2 a = 3 k ⟹ a = 2 1 − 3 k
as 1 - 3k is always divisible by 2 for k = -(2n - 1),
⟹ a = 2 1 − 3 ( − ( 2 n − 1 ) ) = 2 1 + 3 ( 2 n − 1 ) = 2 6 n − 2 = 3 n − 1 , for n > 0. ⟹ b = ( 3 n − 1 ) 2 − 2 7 ( 1 − 2 ( 3 n − 1 ) ) 3 b = 9 n 2 − 6 n + 1 − 2 7 ( − 3 ( 2 n − 1 ) 3 ) ⟹ b = 9 n 2 − 6 n + 1 + ( 2 n − 1 ) 3 = 9 n 2 − 6 n + 1 + 8 n 3 − 1 2 n 2 + 6 n − 1 = 8 n 3 − 3 n 2 hence, r = 8 , x = s = 3 , y = 2 .
n = 1 ∑ 5 ( r n x − s n y ) ⟺ n = 1 ∑ 5 ( 8 n 3 − 3 n 2 ) = 1 6 3 5 ∴ r + x + s + y + n = 1 ∑ 5 ( r n x − s n y ) = 8 + 3 + 3 + 2 + n = 1 ∑ 5 ( 8 n 3 − 3 n 2 ) = 8 + 3 + 3 + 2 + 1 6 3 5 = 1 6 5 1