Rewrite them in terms of combination maybe?

Let n ! = 1 × 2 × 3 × × n n! = 1\times2\times3\times \cdots\times n .

Which of the following numbers is the smallest?

4 ! × 9 ! 4!\times9! 5 ! × 8 ! 5!\times8! 6 ! × 7 ! 6!\times7!

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Nihar Mahajan
Dec 7, 2016

6 ! × 7 ! 5 ! × 8 ! = 6 8 < 1 \dfrac{6!\times 7!}{5!\times 8!} = \dfrac{6}{8} < 1

6 ! × 7 ! 4 ! × 9 ! = 30 72 < 1 \dfrac{6!\times 7!}{4!\times 9!} = \dfrac{30}{72} < 1

Hence 6 ! × 7 ! 6!\times 7! is indeed the smallest.

This method is impressive.I like it!

Anandmay Patel - 4 years, 6 months ago
Michael Huang
Dec 3, 2016

Let a = 6 ! 7 ! \color{#D61F06}a = 6!7! , b = 5 ! 8 ! \color{#3D99F6}b = 5!8! and c = 4 ! 9 ! \color{#20A900}c = 4!9! . Observe that 6 ! 9 ! = 6 ! ( 9 8 ) 7 ! = 72 ( 6 ! 7 ! ) = 72 a = ( 6 5 ! ) ( 9 8 ! ) = 6 9 ( 5 ! 8 ! ) = 54 b = ( 6 5 4 ! ) 9 ! = 6 5 ( 4 ! 9 ! ) = 30 c \begin{array}{rl} 6!9! &= 6! \cdot (9\cdot 8) 7! = 72 \cdot \left({\color{#D61F06}6!7!}\right) = 72{\color{#D61F06}a}\\ &= \left(6 \cdot 5!\right) \cdot \left(9 \cdot 8!\right) = 6 \cdot 9 \cdot \left({\color{#3D99F6}5!8!}\right) = 54{\color{#3D99F6}b}\\ &= \left(6 \cdot 5 \cdot 4! \right) \cdot 9! = 6 \cdot 5 \cdot \left({\color{#20A900}4!9!}\right) = 30{\color{#20A900}c} \end{array} Thus, 72 a = 54 b = 30 c a = 3 4 b = 5 12 c a < b < c \begin{array}{rrcl} & 72{\color{#D61F06}a} &= 54{\color{#3D99F6}b} &= 30{\color{#20A900}c}\\ & {\color{#D61F06}a} &= \dfrac{3}{4}{\color{#3D99F6}b} &= \dfrac{5}{12}{\color{#20A900}c}\\ \Longrightarrow& {\color{#D61F06}a} &< {\color{#3D99F6}b} &< {\color{#20A900}c} \end{array} which shows that 6 ! 7 ! is the smallest \boxed{{\color{#D61F06}6!7!}\text{ is the smallest}} .

Oh nice, doing it via LCM.

I approached it via GCD, looking at the largest common factor which is 4 ! × 7 ! 4! \times 7 ! .

Calvin Lin Staff - 4 years, 6 months ago

Nikkil V
Dec 10, 2016

Let a , b , c a,b,c denote the values 4 ! × 9 ! , 5 ! × 8 ! , 6 ! × 7 ! 4! \times9!, 5!\times8!, 6!\times7! , respectively.

We want to find min ( a , b , c ) \min(a,b,c) . Equivalently, we can find max ( 1 a , 1 b , 1 c ) \max \left( \dfrac1a, \dfrac1b, \dfrac1c \right) .

Or similarly, max ( 13 ! a , 13 ! b , 13 ! c ) \max \left( \dfrac{13!}a, \dfrac{13!}b, \dfrac{13!}c \right) .

Since 13 ! a = 13 C 4 , 13 ! b = 13 C 5 , 13 ! c = 13 C 6 \dfrac{13!}a = ^{13}C_4, \dfrac{13!}b = ^{13}C_5, \dfrac{13!}c =^{13}C_6 , where a C b = a ! b ! ( a b ) ! ^a C_b = \dfrac{a!}{b!(a-b)!} denotes the binomial coefficient .

Then, max ( 13 ! a , 13 ! b , 13 ! c ) = max ( 13 C 4 , 13 C 5 , 13 C 6 ) \max \left( \dfrac{13!}a, \dfrac{13!}b, \dfrac{13!}c \right) = \max \left(^{13}C_4, ^{13}C_5, ^{13}C_6\right) .

Using the properties of binomial coefficient, we know that 13 C x ^{13}C_x is maximized when x = 13 2 , 13 2 = 6 , 7 x = \left \lfloor \dfrac{13}2 \right \rfloor , \left \lceil \dfrac{13}2 \right \rceil = 6, 7 . So max ( 13 C 4 , 13 C 5 , 13 C 6 ) = 13 C 6 = 13 ! c \max \left(^{13}C_4, ^{13}C_5, ^{13}C_6\right) = ^{13}C_6 = \dfrac{13!}{c} . Hence, the smallest numbers among a , b , c a,b,c is c = 6 ! × 7 ! c = \boxed{6!\times7!} .

@Nikkil V , we really like the approach you've written in the report section. We have converted your ideas from the report section into a solution.

Brilliant Mathematics Staff - 4 years, 6 months ago
Abhishek Sinha
Dec 13, 2016

Recall that, for a fixed natural number n n , the binomial coefficient ( n k ) = n ! k ! ( n k ) ! \binom{n}{k}= \frac{n!}{k! (n-k)!} attains its maximum value when k = n 2 k=\lfloor \frac{n}{2}\rfloor . This implies that, for a fixed n n , the product k ! ( n k ) ! k!(n-k)! attains its minimum value for k = n 2 k=\lfloor \frac{n}{2}\rfloor . Apply the above result with n = 13 n=13 .

Luís Felipe
Dec 12, 2016

4!9! = 4!4! * (5 * 6 * 7 * 8 * 9) = 4!4! * (5 * 6 * 7) * (8 * 9)
5!8! = 4!4! * (5 * 5 * 6 * 7 * 8) = 4!4! * (5 * 6 * 7) * (5 * 8)
6!7! = 4!4! * (5 * 6 * 5 * 6 * 7) = 4!4! * (5 * 6 * 7) * (5 * 6)

(5 * 6)<(5 * 8)<(8 * 9)

This is how do I mentally solved the problem.

Nicely done!!

Pi Han Goh - 4 years, 6 months ago
Satyam Tripathi
Dec 16, 2016

When a×b is min when a approaches b

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...