Riemann and Bernoulli join forces

Calculus Level 5

If B n B_n denotes the n th n^\text{th} Bernoulli number, evaluate

n = 1 ζ ( 2 n ) B 2 n . \sum_{n=1}^\infty \frac{\zeta(2n)}{B_{2n}}.

Notation : ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Jan 14, 2016

We know for positive n ζ ( 2 n ) = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! \zeta(2n)=\dfrac{(-1)^{n+1}B_{2n}(2\pi)^{2n}}{2(2n)!} Hence we have n = 1 ζ ( 2 n ) B 2 n = n = 1 ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! = 1 2 ( n = 0 ( ( 1 ) n ( 2 π ) 2 n ( 2 n ) ! ) 1 ) \sum_{n=1}^\infty \frac{\zeta(2n)}{B_{2n}}=\sum_{n=1}^\infty \dfrac{(-1)^{n+1}(2\pi)^{2n}}{2(2n)!}\\=\dfrac{-1}{2}\left(\sum_{n=0}^\infty \left(\dfrac{(-1)^{n}(2\pi)^{2n}}{(2n)!}\right)-1\right) The summation is the taylor series for cos ( x ) = n = 0 ( 1 ) n x 2 n ( 2 n ) ! \cos(x)=\displaystyle\sum_{n=0}^\infty \dfrac{(-1)^nx^{2n}}{(2n)!} . So : 1 2 ( cos ( 2 π ) 1 ) = 1 2 ( 1 1 ) = 0 \dfrac{-1}{2}(\cos(2\pi)-1)=\dfrac{-1}{2}(1-1)=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...