Riemann Will Be Happy

Calculus Level 4

0 x x e x 1 d x = A B π ζ ( C D ) \int_{0}^{\infty}\frac{x\sqrt{x}}{e^x-1}dx = \frac{A}{B}\sqrt{\pi}\zeta\left(\frac{C}{D}\right)

The equation above holds true for coprime positive integer pairs ( A , B ) (A, B) and ( C , D ) (C, D) . Find A + B + C + D A+B+C+D .

Notation: ζ ( ) \zeta (\cdot) denotes the Riemann zeta function .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aryaman Maithani
Jun 23, 2018

0 x x e x 1 d x \int\limits_{0}^{\infty}\dfrac{x\sqrt{x}}{e^x-1}dx

= 0 x x e x ( 1 1 e x ) d x =\int\limits_{0}^{\infty}\dfrac{x\sqrt{x}}{e^x(1-\frac{1}{e^x})}dx

= 0 x x e x ( 1 + 1 e x + 1 ( e x ) 2 + ) d x =\int\limits_{0}^{\infty}\dfrac{x\sqrt{x}}{e^x}\Bigg(1 + \dfrac{1}{e^x} + \dfrac{1}{(e^x)^2} + \dots\Bigg) dx ^*

= 0 x x ( 1 e x + 1 ( e x ) 2 + 1 ( e x ) 3 + ) d x =\int\limits_{0}^{\infty}x\sqrt{x}\Bigg(\dfrac{1}{e^x} + \dfrac{1}{(e^x)^2} + \dfrac{1}{(e^x)^3} + \dots\Bigg) dx

= 0 x x n = 0 1 e n x d x =\int\limits_{0}^{\infty}x\sqrt{x}\sum\limits_{n=0}^{\infty}\dfrac{1}{e^{nx}} dx

= n = 0 0 x 3 2 e n x d x =\sum\limits_{n=0}^{\infty}\int\limits_{0}^{\infty}\dfrac{x^{\frac{3}{2}}}{e^{nx}} dx

Substituting n x = t \text{Substituting }nx = t

= n = 0 0 ( t n ) 3 2 e t d t n =\sum\limits_{n=0}^{\infty}\int\limits_{0}^{\infty}\dfrac{(\frac{t}{n})^{\frac{3}{2}}}{e^{t}} \dfrac{dt}{n}

= n = 0 1 n 5 2 0 t 3 2 e t d t =\sum\limits_{n=0}^{\infty}\dfrac{1}{n^{\frac{5}{2}}}\int\limits_{0}^{\infty}t^{\frac{3}{2}}e^{-t} dt

= n = 0 1 n 5 2 Γ ( 5 2 ) =\sum\limits_{n=0}^{\infty}\dfrac{1}{n^{\frac{5}{2}}}\Gamma\Bigg({\dfrac{5}{2}}\Bigg) ^{**}

= ζ ( 5 2 ) Γ ( 5 2 ) =\zeta\Bigg(\dfrac{5}{2}\Bigg)\Gamma\Bigg({\dfrac{5}{2}}\Bigg)

Γ ( 5 2 ) = 3 2 1 2 π \Gamma\Bigg({\dfrac{5}{2}}\Bigg) = \dfrac{3}{2}\cdot\dfrac{1}{2}\cdot\sqrt{\pi}

A = 3 , B = 4 , C = 5 , D = 2 , A + B + C + D = 14 \therefore A = 3, B = 4, C = 5, D = 2, A+B+C+D=\boxed{14}


1 + x + x 2 + = 1 1 x for x < 1 , x > 0 ^* 1 + x + x^2 + \dots = \dfrac{1}{1-x} \text{ for }|x| < 1, \because x > 0 in the question, 1 e x < 1 \dfrac{1}{e^x} < 1 .


^{**} Refer to the defintion of the Gamma function .

Chew-Seong Cheong
Jun 25, 2018

The relationship between gamma function Γ ( s ) \Gamma(s) and Riemann zeta function ζ ( s ) \zeta(s) is given by

0 x s 1 e x 1 d x = Γ ( s ) ζ ( s ) 0 x x e x 1 d x = Γ ( 5 2 ) ζ ( 5 2 ) From Γ ( 1 + s ) = s Γ ( s ) = 3 2 Γ ( 3 2 ) ζ ( 5 2 ) = 1 2 3 2 Γ ( 1 2 ) ζ ( 5 2 ) and Γ ( 1 2 ) = π = 3 4 π ζ ( 5 2 ) \begin{aligned} \int_0^\infty \frac {x^{s-1}}{e^x-1} dx & = \Gamma (s) \zeta (s) \\ \implies \int_0^\infty \frac {x\sqrt x}{e^x-1} dx & = {\color{#3D99F6}\Gamma \left(\frac 52\right)} \zeta \left(\frac 52\right) & \small \color{#3D99F6} \text{From } \Gamma (1+s) = s \Gamma (s) \\ & = {\color{#3D99F6}\frac 32 \Gamma \left(\frac 32\right)} \zeta \left(\frac 52\right) \\ & = {\color{#3D99F6}\frac 12 \cdot \frac 32 \Gamma \left(\frac 12\right)} \zeta \left(\frac 52\right) & \small \color{#3D99F6} \text{and } \Gamma \left(\frac 12\right) = \sqrt \pi \\ & = \frac 34 \sqrt \pi \zeta \left(\frac 52\right) \end{aligned}

Therefore, A + B + C + D = 3 + 4 + 5 + 2 = 14 A+B+C+D= 3+4+5+2 = \boxed{14} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...