River crossing

A ferry runs between two landing piers A A and B B on diagonally opposite sides of the river. While the ferry moves with a velocity of v = 5 m/s v = 5 \text{ m/s} relative to the water, the river itself has a flow velocity of u = 3 m/s . u = 3 \text{ m/s}. In order not to be driven off, the boat must steer towards the opposite direction of the flow.

In the best case, how long does it take for the boat to make a round trip between A A and B ? B?


Note: The hold at the pier and the turning maneuver are neglected.

120 s 160 s 270 s 360 s

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Sep 11, 2017

The velocities v i \vec v_i and u \vec u of the boat and the flow add up to the total velocity w i \vec w_i , that is aligned parallel to the line A B \overline{AB} (with index i = 1 , 2 i = 1,2 ). This can be graphically represented by the correspondings vector parallelograms:

With the help of angles α 1 \alpha_1 and α 2 \alpha_2 we can represent the vector addition by the follows sets of equations: w 1 = ( w 1 / 2 w 1 / 2 ) = ( v cos α 1 v sin α 1 ) + ( 0 u ) = v 1 + u ( 1 ) w 2 = ( w 2 / 2 w 2 / 2 ) = ( v cos α 2 v sin α 2 ) + ( 0 u ) = v 2 + u ( 2 ) \begin{aligned} \vec w_1 = \left( \begin{array}{c} w_1/\sqrt{2} \\ w_1/\sqrt{2} \end{array}\right) &= \left( \begin{array}{c} v \cos \alpha_1 \\ v \sin \alpha_1 \end{array}\right) + \left( \begin{array}{c} 0 \\ u \end{array}\right) = \vec v_1 + \vec u \qquad (1) \\ \vec w_2 = \left( \begin{array}{c} - w_2/\sqrt{2} \\ -w_2/\sqrt{2} \end{array}\right) &= \left( \begin{array}{c} -v \cos \alpha_2 \\ -v \sin \alpha_2 \end{array}\right) + \left( \begin{array}{c} 0 \\ u \end{array}\right) = \vec v_2 + \vec u \qquad (2) \end{aligned} By elimination of the variable w i w_i , we obtain the following equations: v cos α 1 = v sin α 1 + u cos α 1 sin α 1 = u v v cos α 2 = v sin α 2 u cos α 2 sin α 2 = u v \begin{aligned} v \cos \alpha_1 &= v \sin \alpha_1 + u & \Rightarrow \qquad \cos \alpha_1 - \sin \alpha_1 &= \frac{u}{v} \\ v \cos \alpha_2 &= v \sin \alpha_2 - u & \Rightarrow \qquad \cos \alpha_2 - \sin \alpha_2 &= -\frac{u}{v} \end{aligned} With the help of the Pythagorean theorem sin 2 x + cos 2 y = 1 \sin^2 x + \cos^2 y = 1 and the addition theorem sin ( x + y ) = sin x cos y + cos x sin y \sin(x + y) = \sin x \cos y + \cos x \sin y we can simplify the left hand side of both formulas: ( cos α sin α ) 2 = cos 2 α 2 cos α sin α + sin 2 α = 1 sin 2 α = ( u v ) 2 α = 1 2 arcsin ( 1 ( u v ) 2 ) = 1 2 arcsin 16 25 = 19. 9 or 70. 1 \begin{aligned} (\cos \alpha - \sin \alpha)^2 &= \cos^2 \alpha - 2 \cos \alpha \sin \alpha + \sin^2 \alpha = 1 - \sin 2\alpha = \left(\frac{u}{v}\right)^2 \\ \Rightarrow \qquad \alpha &= \frac{1}{2} \text{arcsin}\left( 1 - \left(\frac{u}{v}\right)^2 \right) = \frac{1}{2} \text{arcsin} \frac{16}{25} = 19.9^\circ \text{ or } 70.1^\circ \end{aligned} The different solutions corresponds to the different angles α 1 \alpha_1 and α 2 \alpha_2 . Substituting these numbers into the equations (1) and (2) yields the total velocities. w 1 = 2 v cos α 1 = 6.65 m s w 2 = 2 v cos α 2 = 2.41 m s \begin{aligned} w_1 &= \sqrt{2} v \cos \alpha_1 = 6.65 \frac{\text{m}}{\text{s}} \\ w_2 &= \sqrt{2} v \cos \alpha_2 = 2.41\frac{\text{m}}{\text{s}} \\ \end{aligned} Therefore, the total traveling time T T results T = t 1 + t 2 = s w 1 + s w 2 = 2 200 m 6.65 m / s + 2 200 m 2.41 m / s 160 s T = t_1 + t_2 = \frac{s}{w_1} + \frac{s}{w_2} = \frac{\sqrt{2} \cdot 200\,\text{m}}{6.65\,\text{m}/\text{s}} + \frac{\sqrt{2} \cdot 200\,\text{m}}{2.41 \,\text{m}/\text{s}} \approx 160 \,\text{s}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...