RLC 11-30-2020

A D C DC voltage source supplies an R L C RLC network as shown. At time t = 0 t = 0 , the inductors and capacitors are de-energized. How much energy is dissipated in resistor R 1 R_1 from t = 0 t = 0 to t = t = \infty ?

Details and Assumptions:
1) V S = 10 V_S = 10
2) R 1 = R 2 = L 1 = L 2 = C 1 = C 2 = 1 R_1 = R_2 = L_1 = L_2 = C_1 = C_2 = 1
3) All quantities are in the appropriate standard S I SI units


The answer is 37.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Nov 30, 2020

I S o u r c e C u r r e n t ; Q C 1 c h a r g e ; I 1 R 2 c u r r e n t I \ - \ \mathrm{Source \ Current} \ ; \ Q \ - \ \mathrm{C_1 \ charge} \ ; \ I_1 \ - \ \mathrm{R_2 \ current} I 2 L 2 c u r r e n t ; I 3 C 2 c u r r e n t ; Q 3 C 2 c h a r g e I_2 \ - \ \mathrm{L_2 \ current} \ ; \ I_3 \ - \ \mathrm{C_2 \ current} \ ; \ Q_3 \ - \ \mathrm{C_2 \ charge}

C i r c u i t E q u a t i o n s : \mathrm{Circuit \ Equations:} V S + I R 1 + L 1 I ˙ + Q C 1 + I 1 R 2 = 0 -V_S + I R_1 + L_1\dot{I} + \frac{Q}{C_1} +I_1R_2=0 Q ˙ = I \dot{Q} = I I 1 R 2 = L 2 I ˙ 2 I_1R_2 = L_2 \dot{I}_2 I 1 R 2 = Q 3 C 2 I_1R_2 = \frac{Q_3}{C_2} Q ˙ 3 = I 3 \dot{Q}_3 = I_3 I = I 1 + I 2 + I 3 I = I_1+I_2+I_3

R e a r r a n g i n g e q u a t i o n s t o s t a t e s p a c e f o r m : \mathrm{Rearranging \ equations \ to \ state \ space \ form:} [ I ˙ Q ˙ Q ˙ 3 I ˙ 2 ] = [ 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 ] [ I Q Q 3 I 2 ] + [ 1 0 0 0 ] V s \left[\begin{matrix} \dot{I} \\ \dot{Q} \\ \dot{Q}_3 \\ \dot{I}_2\end{matrix}\right] = \left[\begin{matrix} -1&-1&-1&0 \\ 1&0&0&0 \\ 1&0&-1&-1 \\ 0&0&1&0 \end{matrix}\right]\left[\begin{matrix} I \\ Q\\ Q_3 \\ I_2\end{matrix}\right] + \left[\begin{matrix} 1 \\ 0\\ 0\\ 0\end{matrix}\right]V_s x ˙ = A x + B V s \implies \dot{x} = Ax + B V_s I = [ 1 0 0 0 ] x \implies I = \left[\begin{matrix} 1 & 0& 0& 0\end{matrix}\right]x x ( 0 ) = [ 0 0 0 0 ] x(0) = \left[\begin{matrix} 0 \\ 0\\ 0\\ 0\end{matrix}\right]

O D E s y s t e m s o l v e d u s i n g I m p l i c i t E u l e r : \mathrm{ODE \ system \ solved \ using \ Implicit \ Euler:} x ( k + 1 ) = ( I δ t A ) 1 ( x ( k ) + δ t B V s ) x(k+1) = (I - \delta t A)^{-1} (x(k) + \delta t \ BV_s)

H e a t D i s s i p a t i o n : \mathrm{Heat \ Dissipation:} H = 0 R 1 I 2 d t 37.5 H = \int_{0}^{\infty} R_1I^2 \ dt \approx 37.5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
clear all, clc

% Initial Condition:
x(:,1) = [0;0;0;0];

% Time initialisation:
dt     = 1e-4; tf = 50; t   = 0:dt:tf;

% System Matrices and source voltage:
A      = [-1 -1 -1 0;1 0 0 0;1 0 -1 -1;0 0 1 0]; B      = [1;0;0;0]; Vs     = 10;

% Heat dissipation initialisation:
H      = 0;

for k = 1:length(t)-1

    % Calculating I:
    I(k)     = [1 0 0 0]*x(:,k);

    % Heat dissipation integral calculation:
    H        = H + I(k)^2*dt;

    % Numerically integrating state space form - Implicit Euler:
    x(:,k+1) = (eye(4) - dt*A)\(x(:,k) + dt*B*Vs);
end

ANSWER = H

This solution has several edits. Initially I had not solved it by recasting the system into a state space form. I have done so now, and used a different numerical scheme.

Karan Chatrath - 6 months, 1 week ago

@Karan Chatrath Happy Diwali.

Talulah Riley - 6 months, 1 week ago

Log in to reply

Thanks and same to you

Karan Chatrath - 6 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...